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I. CHEMICAL NETWORK FOR THE tRNAIle AMINOACYLATION

In this section, we provide a more detailed account on our model of the mechanism of

aminoacylation by IleRS , including the derivation of the biochemical parameters in the

model. The aminoacylation mechanism can be divided into two stages [1, 2]. In the first

stage, the amino acid (aa) is activated at the active site of the synthetase by hydrolyzing

ATP to form aminoacyl-adenylates (Ile-AMP or Val-AMP), as shown by the reactions in

the green box (see Figure S1). The tRNA can subsequently bind to the complex. The

charged amino acid is then transferred to the 3’ end of the tRNA, which is represented

by the reactions in the purple box (see Figure S1). Finally, the charged aminoacyl-tRNA

dissociates from the synthetase at rate kp (or k′p) and is delivered to the ribosome by the

elongation factor Tu (EF-Tu). Since we are mainly concerned with the accuracy of tRNA

charging, the delivery and any subsequent process will not be included in the model.

The amino acid substrate specificity is achieved not only by the preferential binding of the
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FIG. S1. Chemical reaction network for the aminoacylation of tRNAIle in E. coli. Abbreviations:

E, isoleucyl-tRNA synthetase (IleRS); Ile, isoleucine; Val, valine. The rate constants are labeled

ki for the right pathway (isoleucine pathway) and k′i for the wrong pathway (valine pathway).

The three proofreading pathways are labeled as kh1, kh2, kh3, and their primed counterparts. The

chemical states are numbered from 1 to 11 as indicated by the numbers in the parentheses.

cognate amino acid, but also through selective editing mechanisms [2, 3]. Although these

proofreading pathways mainly serve to reduce the production rate of misacylated tRNA,

they can also occur (albeit with lower probability) for complexes with the right amino acid.

Therefore, we construct a completely symmetric reaction network where all proofreading

mechanisms exist for both amino acids. The preference for the cognate substrate is reflected

in the higher affinity and lower editing rates. Specifically, there are two pre-transfer edit-

ing pathways (red boxes in Figure S1) and one post-transfer editing pathway (blue boxes

in Figure S1). The first pre-transfer editing (modeled by kh1) is tRNA-independent and

occurs before tRNA binding. In this reaction, the aminoacyl-adenylate (aa-AMP) is either

dissociated from the synthetase or hydrolyzed at the active site . We do not distinguish dis-

sociation from hydrolysis because the synthetase is reset to its initial state (E) after either

reaction. The second pre-transfer editing pathway (modeled by kh2) is tRNA-dependent

and hydrolyzes the aa-AMP complex before the amino acid could be transferred to tRNA,

which is already bound to the complex. Finally, the post-transfer editing pathway (mod-

eled by kh3) occurs after the transfer and results in the translocation of aminoacyl-tRNA

from the active site to the editing site and its subsequent hydrolysis (deacytlation). We are
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only concerned with the proofreading of aminoacyl-tRNA that occurs prior to its release

from the aminoacyl-tRNA synthetase. Quality control mechanisms that take place after

the aminoacyl-tRNA is released (e.g., the preferential binding of the elongation factor Tu

to the correctly acylated-tRNA[2]) constitute a different layer of specificity enhancement

and hence, are not explicitly considered in the model. The model focuses on the stochas-

tic dynamics of a single isoleucyl-tRNA synthetase and assumes constant concentrations of

other molecular species in the cellular environment such as amino acids. Although the low

activation energy for the hydrolysis of the ester bond of aa-tRNA allows for the deacylation

of misacylated products by either editing site residues or the free-hydroxyl groups of A76

[2], they are not relevant in this current framework.

The above-described mechanism is illustrated on Figure S1 and serves as foundation for

our biophysical model. The rate parameters are either directly obtained or indirectly derived

from published kinetic experiments [3–18] as described below.

A. Determination of Rate Constants from the Literature

The numeric values and sources of all rate constants that are shown in Figure S1 are sum-

marized in Table S1. Most of them are directly obtained from the literature. Explanations

for a few of parameters that are indirectly derived or estimated are listed below:

• The tRNA binding steps (k3 and k′3) are assumed to be diffusion-limited. Their forward

rates are estimated by the Smoluchowski equation k = 4πDR, where D and R are the

diffusion coefficient and the radius of the molecule. There backward rate constants are

calculated as the product of the dissociation constant and the forward rate constant.

• The binding of amino acid and ATP are model as one step with the assumption

that ATP binding is diffusion-limited. The detailed procedures are given in the next

subsection.

• Product release rate is derived by using the the three slowest steps to estimate the

waiting time τ = 1
kobs
≈ 1

k4
+ 1

kp
+ 1

ka
, from which kp can be solved. kobs is given by

Table 4 of ref. [13].

• The product release rate for the non-cognate substrate k′p is assumed to be the same

as the cognate product release rate kp based on a chemical argument. Given that
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valine and isoleucine differ only in the side chain (which is a small part of the whole

aminoacyl-tRNA complex) and that the amino acid has been transferred to the tRNA,

we argue that this difference should not affect the product release rate.

Parameter Value (s−1) Sources

k+ 6.2× 105 [3, 5, 14, 15]

k− 30 [3, 5, 14, 15]

k′+ 7.0× 103 [3, 5, 14, 15]

k′− 28 [3, 5, 14, 15]

ka 40 kcat from [3]

k′a 31 kcat from [3]

k3 8.7× 102 [8, 17, 18]

k−3 1.1× 102 [4, 17, 18]

k′3 8.7× 102 [8, 17, 18]

k′−3 1.1× 102 [4, 17, 18]

k4 3.8 Figure 2 of [3]

k′4 2.3 Figure 2 of [3]

kh1 0.003 Table 1 of [3]; Supp. Table 1 of [13]

k′h1
0.036 Table 1 of [3]; Supp. Table 1 of [13]

kh2 0.0135 Table 1 of [3]

k′h2
0.128 Table 1 of [3]

kh3 0.058 Table 4 of [3]

k′h3
64 Table 4 of [3]

kp 0.65 Table 4 of [13]

k′p 0.65 Table 4 of [13]

TABLE S1. Estimated first-order kinetic parameters involved in the tRNAIle aminoacylation

model.
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B. Justification for Modeling Amino Acid Binding and ATP Binding as One Step

The first step of our kinetic model (Figure 1) is the charging of the amino acid. It includes

binding of both the amino acid and ATP to the enzyme followed by transfer of AMP to the

amino acid and release of the pyrophosphate PPi. Generally speaking, the amino acid and

ATP don’t have to bind sequentially. Here, we construct a one-step binding model with

effective first-order reaction rates k+ and k− under physiological conditions by exploring the

complete model in which ATP or the amino acid bind in random order.

First, we consider a sequential binding model (s1 is the amino acid and s2 is ATP),

E
k1s1−−−⇀↽−−
k−1

E·s1
k2s2−−−⇀↽−−
k−2

E·s1 · s2 ·

Using x, y, and z to denote the concentration of the three states of the enzyme, the quasi-

steady-state approximation of E·s1 reads:

(k2s2 + k−1)y = k1s1x+ k−2z. (S1)

The net flux through this pathway is

J = k1s1x− k−1y = k1s1x− k−1
k1s1x+ k−2z

k2s2 + k−1
=
k1s1k2s2x− k−2k−1z

k2s2 + k−1
, (S2)

so we can view this model as a single step reaction with:

E
J+ = k1k2s1s2

k2s2+k−1−−−−−−−−−⇀↽−−−−−−−−−
J− =

k−2k−1

k2s2+k−1

E·s1 · s2

Note that the forward reaction rate is proportional to s1s2, so we can effectively write it as

the simultaneous binding of s1 and s2. Since the s1 and s2 are completely symmetric in this

case, we can write the other pathway in which s2 binds first in the same form and sum the

reaction constants together. In the end, we have

E
k+s1s2−−−−⇀↽−−−−
k−

E·s1 · s2
ka−−→ E·aa–AMP,

in which k+ = k1k2
k2s2+k−1

+ k3k4
k4s1+k−3

and k− = k−1k−2

k2s2+k−1
+ k−3k−4

k4s1+k−3
are both dependent on the

ATP and amino acid concentrations. Mathematically, the total flux can be written in the

Michaelis-Menten form

v =
kae0

1 + ka+k−
k+s1s2

. (S3)
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To get parameter estimations for this steps from experiments, we refer to Table 6 of ref. [3]

where the production of the aa·E·AMP complex is measured by pyrophosphate exchange

experiments. The authors fitted to a Michaelis-Menten scheme to their kinetics data with a

standard method of determining the Michaelis-Menten constant through a double reciprocal

plot ( kae0v
−1 and 1

s1
are plotted against each other). For our scheme, we have

kae0
v

= 1 +
ka + k−
k+s1s2

= 1 +
ka + k−
k+s1s2

. (S4)

Note that k+ and k− are both functions of s1 and s2, so the double reciprocal plot is not

exactly a straight line. Since the concentration s1 was varied around Km in the experiment,

the measured Michaelis-Menten constant should be the slope of the tangent near s1 = Km,

mathematically written as:

Km =
d

ds−11

(
1 +

ka + k−
k+s1s2

)∣∣∣∣
s1=Km

. (S5)

Effectively, we are doing a Taylor expansion of Equation S4 near s1 = Km, whose solution

is

Km =
ka(k2s2 + k−1) + k−1k−2

k1k2s2
=
Kd1Kd2

s2
+

ka
k2s2

(
Kd1 +

k2s2
k1

)
. (S6)

Assuming that ATP (s2) binding is diffusion limiting, the binding rate is

k2 = 4πD[ATP]R[ATP] = 1.59× 108 M−1s−1, (S7)

where DATP is obtained from [14]; RATP is obtained from ref. [15]. Considering the physiolog-

ical concentration of ATP, we have k2s2 = 1.53×106s−1 and k−2 = Kd,ATPk2 = 2.78×104s−1.

On the other hand, the experiment measurements are kcat = 40.2 s−1 and KM = 6.9 µM for

isoleucine, and k′cat = 31 s−1 and K ′M = 1.0 mM for valine. The concentration of ATP used

was 4.0 mM. k1 can be explicitly solved from Equation S6:

k1 = 5.95× 106 M−1s−1(isoleucine)/3.2× 104 M−1s−1(valine). (S8)

Hence, k1s1 = 1.8 × 104 s−1(isoleucine)/1.3 × 102 s−1(valine). The reverse rate constant

k−1 = k1Kd1 = 48 s−1(isoleucine)/28 s−1(valine).

Assuming symmetric rate constants, namely, k±1 = k±4 and k±2 = k±3, we then calculate

the value of k+ and k− under physiological concentrations and use this single step to represent

the binding and unbinding of both substrates. The pseudo-first order rate constants are:

k+ = 6.2× 105 s−1(isoleucine)/7.0× 103 s−1(valine) (S9)

k− = 30 s−1(isoleucine)/28 s−1(valine). (S10)
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C. Thermodynamic Constraints and the Determination of Reverse Reaction Rates

Although some of the steps are strongly driven forward, we make all reactions reversible

in the simulation for the sake of thermodynamic consistency as irreversible reactions always

lead to infinite dissipation. The rate constants for reverse reactions are determined by a set

of thermodynamic constraints that connect the ratio of the rate constants with the chemical

potential difference of the reactants and products of any reaction cycle [19]:

∆µ = ln

(∏
i

ki+
ki−

)
, (S11)

where ki+ and ki− stands for the forward and backward rate constants; ∆µ stands for

the chemical potential difference between the reactants and products. For futile cycles

∆µATP = 29.5 kBT , and for product formation cycles ∆µp = 9.8 kBT . In this system, the

thermodynamic constraints read

k+kakh1
k−k−ak−h1

= e29.5

k+kak3kh2
k−k−ak−3k−h2

= e29.5

k+kak3k4kh3
k−k−ak−3k−4k−h3

= e29.5

k+kak3k4kp
k−k−ak−3k−4k−p

= e9.8.

(S12)

The same set of constraints also exist for the noncognate reactions, where the rate constants

are simply replaced by their primed counterparts. The reverse rate constants that are

omitted in Figure S1 can be determined from these relations. Their values are introduced

purely for the calculation of the dissipation and will not change the kinetic behavior of the

model.

II. COMPUTATIONAL AND ANALYTIC METHODS

A. Backward Master Equations and the Definitions of Speed and Accuracy

We quantify the speed and accuracy of the aminoacylation process using the framework

of a first-passage process [20, 21]. Specifically, the temporal evolution of the system can be

considered as Markovian jumps between discrete enzymatic states until the formation of a
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correct or incorrect product. In the tRNAIle aminoacylation network, we have 11 chemical

states, which are labeled from 1 to 11 (see Figure S1). States 10 and 11 are end states

which correspond to the formation of a correct and incorrect product, respectively. For each

state i, we can define FR/W,i(t) as the first-passage probability density such that FR,i(t) dt

(or FW,i(t) dt) quantifies the probability of forming a correct (or incorrect) product between

t and t + dt without forming any products before time t, assuming that the enzyme starts

at state i at time t = 0. In order quantify speed and accuracy, we define the splitting

probability ΠR/W as the probability that the first product created is correct (incorrect),

assuming that the system starts at state 1 (the free enzyme state E) at time t = 0:

ΠR/W =

∫ ∞
0

FR/W,1(t) dt . (S13)

Naturally, accuracy is quantified by the error rate given by

η =
ΠW

ΠR

, (S14)

which is consistent with its traditional definition as the ratio between the product forming

rates[22, 23]. The speed (i.e., inverse time) is quantified by the conditional mean first-

passage time (MFPT), which is given by the (normalized) first moment of the first-passage

probability density

τ =
1

ΠR

∫ ∞
0

tFR,1(t)dt. (S15)

Now we present the mathematical formalism used to analytically determine η and τ .

According to the definition, the first-passage probability densities of the end states read:

FR,10(t) = δ(t), FR,11(t) = 0,

FW,10(t) = 0, FW,11(t) = δ(t),
(S16)

where δ(t) is the Dirac δ function. The time evolution of the first-passage probability

densities of the other states FR/W,i(t) (i = 1, 2, . . . , 9) is governed by the backward master

equations, which read:

d

dt
FR/W,i(t) =

11∑
j=1

ki,j
[
FR/W,j(t)− FR/W,i(t)

]
, i = 1, 2, . . . , 9 (S17)

where ki,j denotes the first-order rate of transition from state i to state j and the initial

conditions are FR/W,i(t) = 0 for i = 1, 2, . . . , 9. The transition rates ki,j in the tRNAIle

aminoacylation network are compactly given by:
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K = (ki,j)11×11 =



0 k+ k′+ k−h1 k′−h1 k−h2 k′−h2 k−h3 k′−h3 0 0

k− 0 0 ka 0 0 0 0 0 0 0

k′− 0 0 0 k′a 0 0 0 0 0 0

kh1 k−a 0 0 0 k3 0 0 0 0 0

k′h1 0 k′−a 0 0 0 k′3 0 0 0 0

kh2 0 0 k−3 0 0 0 k4 0 0 0

k′h2 0 0 0 k′−3 0 0 0 k′4 0 0

kh3 0 0 0 0 k−4 0 0 0 kp 0

k′h3 0 0 0 0 0 k′−4 0 0 0 k′p

0 0 0 0 0 0 0 k−p 0 0 0

0 0 0 0 0 0 0 0 k′−p 0 0



. (S18)

While Eqs. S16–S18 in principle can be directly solved for FR/W,i(t), it is usually more

convenient to solve the backward master equations by performing a Laplace transforma-

tion F̃R/W,i(s) =
∫∞
0
FR/W,i(t)e

−st dt. The transformed system obeys the following set of

equations:

sF̃R/W,i(s) =
11∑
j=1

ki,j

[
F̃R/W,j(s)− F̃R/W,i(s)

]
, i = 1, 2, . . . , 9 (S19)

and

F̃R,10(s) = 1, F̃R,11(s) = 0

F̃W,10(s) = 0, F̃W,11(s) = 1.
(S20)

Equation S19 is a set of linear algebraic equations for F̃R/W,i(s) that can be solved analyti-

cally. The associated splitting probabilities ΠR/W are given by

ΠR/W =

∫ ∞
0

FR/W,1(t) dt = F̃R/W,1(s = 0). (S21)

The error η is therefore determined as the ratio of the two splitting probabilities

η =
ΠW

ΠR

=
F̃W,1(0)

F̃R,1(0)
. (S22)

The conditional MFPT τ is given by the normalized first moment of the first-passage prob-

ability density:

τ =
1

ΠR

∫ ∞
0

tFR,1(t) dt = − 1

ΠR

(
dF̃R,1(s)

ds

)∣∣∣∣∣
s=0

. (S23)
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The symbolic linear algebra calculations based on Eqs. S17–S23 are done in Mathematica.

The resulting expressions evaluated for the estimated parameter values are plotted in the

main text figures.

B. Forward Master Equations and the Definition of Dissipation

In the forward framework, we use Pi(t) to denote the probability of the enzyme being in

chemical state i at time t. The main difference from the backward framework is that states

1, 10, and 11 should be considered to be the same state (i.e. the free enzyme). Therefore,

we only have 9 distinct enzyme states. The probabilities of the enzyme being in different

states are normalized by the following condition:

9∑
i=1

Pi(t) = 1, ∀ t ∈ R. (S24)

The time-dependent probability flux from state i to state j is given by Ji,j(t) = ki,jPi(t).

The time evolution of the probabilities Pi(t) is governed by the forward master equations,

which read:
dPi(t)

dt
=
∑
j

[kj,iPj(t)− ki,jPi(t)] , i = 1, 2, . . . , 9. (S25)

Note that merging states 1, 10, and 11 reduces the transition rates matrix K to a 9 × 9

matrix, which reads:

K = (ki,j)9×9 =



0 k+ k′+ k−h1 k′−h1 k−h2 k′−h2 k−h3 + k−p k′−h3 + k′−p

k− 0 0 ka 0 0 0 0 0

k′− 0 0 0 k′a 0 0 0 0

kh1 k−a 0 0 0 k3 0 0 0

k′h1 0 k′−a 0 0 0 k′3 0 0

kh2 0 0 k−3 0 0 0 k4 0

k′h2 0 0 0 k′−3 0 0 0 k′4

kh3 + kp 0 0 0 0 k−4 0 0 0

k′h3 + k′p 0 0 0 0 0 k′−4 0 0



.

(S26)

Setting the right hand side of Equation S25 to zero gives the steady-state probability

distributions P ss
i . We can calculate the steady-state probability fluxes J ss

i,j = ki,jP
ss
i (The
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superscript ss will be dropped for simplicity). The steady state energy dissipation rate of

the system is given by:

σ0 =
∑
i

(J+
i − J−i ) ln

J+
i

J−i
, (S27)

where J±i are the forward/backward steady-state fluxes of the chemical reaction i[19, 24].

It can be shown that the energy dissipation can be decomposed into three parts:

σ0 = Jproof∆µATP + JR∆µR + JW∆µW , (S28)

where Jproof is the sum of all net proofreading fluxes; JR and JW are the product formation

fluxes for the right and wrong product, respectively. ∆µATP = 29.5 kBT is the free energy

released from ATP hydrolysis into AMP and PPi under physiological concentrations of

ATP, AMP, and PPi. ∆µR = ∆µp = 9.8 kBT is the free energy cost of forming a correctly

charged isoleucyl-tRNA, namely the difference between the free energy released from the

hydrolysis of ATP and that stored in the ester bond connecting tRNA and isoleucine. ∆µW

is the corresponding energy cost for valine, which is typically different from ∆µR. However,

since JW is much smaller than other fluxes, especially JR, the difference between ∆µW

and ∆µR has negligible impact on the total dissipation. For the purpose of computing the

total dissipation, we can safely ignore the last term in Eq. S28. We study the normalized

dissipation rate σ defined as the dissipation rate per correct product formed:

σ =
σ0
JR

=
Jproof
JR

∆µATP + ∆µR + η∆µW ≈
Jproof
JR

∆µATP + ∆µR. (S29)

The symbolic linear algebra calculations based on Eqs. S24–S29 are done in Mathematica.

The resulting expressions evaluated for estimated parameter values are plotted in the main

text figures.
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