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I. SUPPLEMENTARY ANALYTIC DERIVATION

A. Derivation of the scaling exponent λ

To derive the expression for the scaling exponent λ in the main text, we will first study the square lattice, where
the derivation is more intuitive, and then generalize it to generic reaction networks.

1. The square lattice

The steady-state dissipation rate of the system is given by

Ẇ =
∑
i<j

(Ji,j − Jj,i) ln
Ji,j
Jj,i

=
∑
i<j

(
ki,jP

ss
i − kj,iP ssj

)
ln
ki,jP

ss
i

kj,iP ssj
, (S1)

where P ssi is the stead-state probability of state i and Ji,j is the steady-state flux from state i to state j [1]. The
transition fluxes can be decomposed into symmetric and antisymmetric components:

Ji,j =
1

2
(Si,j +Ai,j), (S2)

where Si,j = Ji,j + Jj,i and Ai,j = Ji,j − Jj,i. The antisymmetric component Ai,j is actually the net current from
state i to j. The dissipation rate as function of A and S reads

Ẇ =
∑
i<j

Ai,j ln
Si,j +Ai,j
Si,j −Ai,j

(S3)

At the microscopic scale, we take the continuum limit that the net flux is an infinitesimal flux compared to the
symmetric flux, i.e. |Ai,j | � |Si,j |. This leads to

Ẇ =
∑
i<j

Ai,j ln
Si,j +Ai,j
Si,j −Ai,j

=
∑
i<j

Ai,j ln
1 +

Ai,j
Si,j

1− Ai,j
Si,j

≈ 2
∑
i<j

A2
i,j

Si,j
= 2L〈

A2
i,j

Si,j
〉, (S4)

where L is the number of links and 〈·〉 denotes averaging over all links. Numeric justifications for this approximation
will be provided in section II.A of the SI, which demonstrates that asymptotically |A| is a lower-order term compared
to |S|.

As demonstrated in Fig. 1A of the main text, renormalization in the square lattice involves merging two adjacent
fluxes:

Ji,j = Ji2,j1 + Ji4,j3 . (S5)

Hence, their symmetric and antisymmetric fluxes are merged accordingly:

Si,j = Si2,j1 + Si4,j3 , Ai,j = Ai2,j1 +Ai4,j3 . (S6)

This leads to

〈Si,j〉 = 〈Si2,j1〉+ 〈Si4,j3〉 = 2〈Siα,jβ 〉,
〈A2

i,j〉 = 〈A2
i2,j1〉+ 〈A2

i4,j3〉+ 2〈Ai2,j1Ai4,j3〉 = 2〈A2
iα,jβ
〉(1 + C)

(S7)

where C = corr(Ai2,j1 , Ai4,j3) is the Pearson correlation coefficient between the adjacent fluxes, explicitly given by

C =
〈Ai2,j1Ai4,j3〉√
〈A2

i2,j1
〉〈A2

i4,j3
〉

=
〈(Ji2,j1 − Jj1,i2)(Ji4,j3 − Jj3,i4)〉√
〈(Ji2,j1 − Jj1,i2)

2〉〈(Ji4,j3 − Jj3,i4)
2〉
, (S8)

Quantities with subscripts iα and jβ are averaged over microscopic links while those with subscripts i and j are
averaged over macroscopic (coarse-grained) links. The link-averaged term 〈A2/S〉 in Eq. S4 is thus given by〈

A2
i,j

Si,j

〉
〈
A2
iα,jβ

Siα,jβ

〉 ≈ 〈A2
i,j〉

〈A2
iα,jβ
〉
〈Siα,jβ 〉
〈Si,j〉

= 1 + C. (S9)
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Note that taking the ratio out of the averaging 〈·〉 is justified by assuming that the correlation between A2 and
S−1 does not change in different coarse-grained layers. Even if the correlation between A2 and S−1 does change after
renormalization, its cumulative contribution to the dissipation is bounded, so the average effect per round goes to zero
in the limit of infinite rounds of renormalization (which leads to the RG fixed point). We will provide further numeric
justifications for this approximation in the later sections of the SI. The ratio of dissipation rate in the coarse-grained
system to the original one is

Ẇ1

Ẇ0

=
L1

L0
(1 + C0). (S10)

Here we add subscript 0 to C to indicate that it is the correlation at the finest-grained level. The dissipation rate at
the s-th coarse-grained level is given by

Ẇs

Ẇ0

=
Ls
L0

s−1∏
i=0

(1 + Ci)→
Ls
L0

(1 + C?)s, (S11)

where C? is the RG fixed point of C:

C? = lim
s→∞

Cs (S12)

The block size and the number of links in the system after s rounds of coarse-graining is given by:

n0
ns

= 4s,
Ls
L0

=
1

4s
(S13)

Therefore, the dissipation scaling exponent is

λ2d = − lim
s→∞

ln Ẇs

Ẇ0

ln n0

ns

= lim
s→∞

s ln 4−∑s
i=1 ln(1 + Ci)

s ln 4
= 1− log4 (1 + C?), (S14)

thus deriving Eq. 9 of the main text.

2. The general expression

In cubic lattice or even more general reaction networks, coarse-graining would involve the merging of more than
two fluxes. Suppose the renormalized flux Ji,j comprises t microscopic fluxes denoted by Ji1,j1 , Ji2,j2 , . . . , Jit,jt :

Ji,j =

t∑
α=1

Jiα,jα . (S15)

Their symmetric and antisymmetric fluxes are merged accordingly:

Si,j =

t∑
α=1

Siα,jα , Ai,j =

t∑
α=1

Aiα,jα . (S16)

We assume that all microscopic fluxes Jiα,jα follow the same statistics. The summation over α can thus be rewritten
as the averaging over the distribution of microscopic fluxes 〈·〉. This leads to

〈Si,j〉 =

〈
t∑

α=1

Siα,jα

〉
= t〈Siα,jα〉,

〈A2
i,j〉 =

〈
t∑

α=1

A2
iα,jα + 2

t∑
α=1

t∑
β=α+1

Aiα,jαAiβ ,jβ

〉
= t〈A2

iα,jα〉(1 + C)

(S17)

where C = corr(Aiα,jα , Ai,j − Aiα,jα) is the Pearson correlation coefficient between the microscopic net flux Aiα,jα
and the sum of all the microscopic net fluxes that will be merged with it to form the macroscopic flux Ai,j . Following
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the same argument used in the square lattice, the link-averaged term 〈A2/S〉 is thus multiplied by (1 + C) after
coarse-graining. The dissipation rate at the s-th level is given by

Ẇs

Ẇ0

=
Ls
L0

s∏
i=1

(1 + Ci)→
Ls
L0

(1 + C?)s, (S18)

which has a form identical to the square lattice but involves a more general definition of the correlation C?. The
block size and the number of links in the system after s rounds of coarse-graining are given by:

n0
ns

= rs,
Ls
L0

=

(
n0
ns

)−dL
= r−sdL (S19)

where dL is the link exponent. Therefore, the dissipation scaling exponent is given by

λ = − lim
s→∞

ln Ẇs

Ẇ0

ln n0

ns

= lim
s→∞

sdL ln r −∑s
i=1 ln(1 + Ci)

s ln r
= dL − logr (1 + C?), (S20)

recovering Eq. 6 of the main text. The square lattice is a special case with r = 4 and dL = 1.

B. Derivation of the link exponent dL in the 2D-embedded scale-free network

In this part, we estimate the link exponent in the 2D-embedded scale-free network (Eq. 11 of the main text) by
calculating the number of links in the coarse-grained network. The degree distribution of the initial network is

p(k) = Ak−α, k ∈ [kmin, kmax], (S21)

where kmin is the minimum degree and kmax is a sufficiently large cutoff. The normalization constant A is given by

A =

(
kmax∑
k=kmin

k−α

)−1
≈
(∫ +∞

k=kmin

k−α dk

)−1
= (α− 1)kα−1min . (S22)

The embedding in 2D allows us to use the same coarse-graining method employed in the square lattice. Suppose that
we coarse-grain states i1, i2, i3, and i4 to form a new state i. The self-similarity property of the scale-free network
leads to the following degree relation

ki = l−dkB max
α=1,2,3,4

kiα , (S23)

where lB = 2 is the linear size of the coarse-grained state and dk is the degree-scaling fractal dimension of the
network [2]. Since kiα follows a power-law distribution with minimum degree kmin and exponent α, its cumulative
degree distribution is

P (kiα ≥ k0) = A

kmax∑
k=k0

k−α ≈ A
∫ +∞

k=k0

k−α dk =

(
kmin

k0

)α−1
. (S24)

The cumulative degree distribution of ki is therefore:

P (ki ≥ k0) = P

(
max

α=1,2,3,4
kiα ≥ 2dkk0

)
= 1−

4∏
α=1

P
(
kiα < 2dkk0

)
= 1−

4∏
α=1

[
1−

(
kmin

2dkk0

)α−1]

≈ 4

(
kmin

2dkk0

)α−1
=

(
k′min

k0

)α−1
.

(S25)
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Hence, the coarse-grained network is also scale-free, with the same exponent α but a different minimum degree

k′min = kmin2
2

α−1−dk . (S26)

The average degree in the scale-free network is

〈k〉 =

kmax∑
k=kmin

p(k)k ≈ A
∫ +∞

k=kmin

k1−α dk =
α− 1

α− 2
kmin ∝ kmin. (S27)

Therefore, the ratio of the number of links in the coarse-grained network to the original one is

L′

L
=
n′〈k′〉
n〈k〉 =

n′

n

k′min

kmin
= 2

2
α−1−dk−2, (S28)

which leads to the link exponent

dL = − ln L′

L

ln n
n′

= 1− 1

α− 1
+
dk
2
. (S29)

To link dL back to the structural parameters of the original network (the finest-grained level), we utilize the following
relation to replace the index dk with the box-covering dimension dB :

α = 1 +
dB
dk
. (S30)

dB can be numerically determined in the original network with a well-established box-covering algorithm [2–4]. The
final expression of the link exponent is:

dL = 1− 1

α− 1
+

dB
2(α− 1)

= 1 +
dB − 2

2(α− 1)
, (S31)

recovering Eq. 11 of the main text.

II. SUPPLEMENTARY SIMULATION RESULTS

This section supplies additional numeric results that further support discussion in the main text and rationalize
the approximations used in the analytical derivation.

A. The square lattice

1. Finite size and boundary effects

The scaling behavior analyzed above assumes an infinitely large system which can approach a RG fixed point after
infinite rounds of coarse-graining. In reality, nevertheless, we can only start with a finite system and do finite rounds
of renormalization. Fortunately, the total dissipation rate does not depend on the lattice size N as long as the total
probability is normalized to 1 and periodic boundary conditions are imposed on all sides (Fig. S1a).

To evaluate the flux correlation C? at the RG fixed point, we need to extrapolate the correlation from finite rounds
of coarse-graining to the limit s→∞. As shown in Fig. S1b, C decreases with the block size following the relation:

C

(
n0
ns

)
=
x+ p

x+ q
C?, x = log2

n0
ns
, (S32)

with fitting parameters C? = −0.50, p = 2.19, q = 3.74, and R2 = 0.9992. Apparently, C converges to C? at the
RG fixed point. To make the convergence more salient, we demonstrate in Fig. S1c that the inverse of the distance
between C and C? increases linearly with x = log2

n0

ns
and will eventually go to infinity. This correspond to first-order

convergence with respect to x.
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FIG. S1. (a) The steady-state dissipation rate for square lattices with different side length N . Error bar: one standard deviation.
The parameters used to generate the lognormal distribution of the transition rates ln k ∼ N (µ, σ) are µ = 0, σ = 0.5. (b) The
convergence of correlation C in the square lattice. Dashed line: numeric fit which extrapolates to the fixed point C? = −0.5.
(c) To make the convergence in (b) more salient, we plot 1

C−C? against the block size. Its linear increase demonstrates a

first-order convergence to C? = −0.5 (also see discussion in the SI text).

2. Statistics of various quantities and justification for approximations

It was demonstrated that the transition rates at all coarse-grained levels all follow lognormal distribution (Fig. 2A,
main text). The fact that the distributions at different coarse-grained levels have the same form manifests the system’s
self-similarity. Here we present similar evidences concerning the local fluxes and dissipation rates of the system to
further demonstrate the self-similar property.

Let us start by looking at the fluxes. Similar to the transition rates discussed in Fig. 2 of the main text, the transition
fluxes J also follow lognormal distributions at all coarse-grained levels with an increasing mean and decreasing standard
deviation (Fig. S2a–c). Remarkably, the histograms of normalized ln J all collapse perfectly to a standard Gaussian
distribution S2a inset), namely

ln J − µ
σ

∼ N (0, 1). (S33)

The same behaviors are observed in the symmetric flux Si,j = Ji,j + Jj,i (Fig. S2d–f), including the collapsing of
the normalized lnS to a standard Gaussian distribution (Fig. S2d inset). This is not completely surprising since the
sum of two random variables independently drawn from identical lognormal distirbutions is approximately lognormal-
distributed, per Fenton-Wilkinson approximation [5, 6]. In contrast, the antisymmetric flux A no longer follows
lognormal distribution. As demonstrated in Fig. S2g, it is symmetrically distributed with respect to A = 0 and
approximately decays exponentially on both sides. The probability density function is the Laplace distribution:

p(A) =
1

2A0
exp(−|A|/A0). (S34)

The parameter A0 can be determined by max-likelihood estimation Â0 = 〈|A|〉. It increases nearly linearly with the
logarithm of the block size log2 (n0/ns) (Fig. S2i). The distribution of the scaled net fluxes A/A0 at all coarse-grained
levels collapse to a (unit) Laplace distribution p(x) = 1

2 exp(−|x|), except for deviations near x = 0 (Fig. S2h).
Notably, the growth of µ and A0 for the fluxes in Fig. S2 entails that S grows as fast as the block size n0/ns while

|A| merely grows as fast as the logarithm of the block size, namely |A| ∼ log2 (n0/ns). Therefore, |A/S| must decay
to zero as the block size goes to infinity, further justifying the approximation |A/S| � 1 employed in Eq. S4.

We also numerically evaluate the validity of approximations taken in Eq. S9. Concretely, it includes two layers of
approximations: 〈

A2
i,j

Si,j

〉
〈
A2
iα,jβ

Siα,jβ

〉 ≈ 〈
A2
i,j

〉 〈
S−1i,j

〉〈
A2
iα,jβ

〉〈
S−1iα,jβ

〉 ≈ 〈A2
i,j〉

〈A2
iα,jβ
〉
〈Siα,jβ 〉
〈Si,j〉

= 1 + C (S35)

The first approximation concerns the correlation between A2 and S−1. The second approximation concerns the
difference between 1/〈S〉 and 〈S−1〉. For the first one, we directly calculate the ratio of 〈A2〉〈S−1〉 to 〈A2S−1〉 and
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FIG. S2. Statistics of various fluxes (J , S, A) at different coarse-grained levels. (a) The probability density function for ln J .
Inset: the distributions at all levels collapse to a standard Gaussian distribution p(x) = 1√

2π
exp

(
−x2/2

)
(red curve) after

shifting the mean to 0 and scaling the standard deviation to 1. (b)–(c) The parameters µ and σ of the lognormal distribution
ln J ∼ N (µ, σ) as a function of the block size n0/ns. (d)–(f) depicts the statistics of lnS in the exact same format as (a)–(c).
(g) The probability density function for the net flux lnA. (h) the distributions of the fluxes scaled by A0. The red curve
is Laplace distribution p(x) = 1

2
exp(−|x|). (i) The distribution parameter A0 as a function of the block size n0/ns. The

corresponding relation between the colors in histograms (a), (d), (g), (h) and the block sizes of coarse-grained levels are given
at the bottom.

plot it in Fig. S3. The deviation from 1 indicates negative correlation between A2 and S−1. The ratio effectively adds
another term to the dissipation scaling exponent. The magnitude of change to the scaling exponent is

δλ =
∆ log2

(
〈A2〉〈S−1〉/〈A2S−1〉

)
∆ log2 (n0/ns)

=
ln (3.40/1.54)

16 ln 2
= 0.07, (S36)

which is small compared to the log4(1 + C) term due to correlation.

Now we turn to the second approximation. Since we know that S follows a lognormal distribution N (µ, σ), the



S8

0 4 8 12 16

1.5

2

2.5

3

3.5

log2
n0

ns

〈A
2
〉〈
S
−
1
〉/
〈A

2
S
−
1
〉

FIG. S3. The ratio of 〈A2〉〈S−1〉 to 〈A2S−1〉 as a function of the block size n0/ns.

difference between 1/〈S〉 and 〈S−1〉 can be computed analytically:

1

〈S〉 =

[∫ +∞

0

1√
2πσ2

exp

(
− (lnx− µ)

2σ2

)
dx

]−1
= e−µ−

σ2

2 ,

〈 1
S
〉 =

∫ +∞

0

1√
2πσ2

exp

(
− (lnx− µ)

2σ2

)
dx

x2
= e

σ2

2 −µ.

(S37)

The ratio is

〈 1
S
〉/ 1

〈S〉 = eσ
2

(S38)

Therefore, the second approximation

〈A2
i,j〉〈S−1

i,j 〉〈
A2
iα,jβ

〉〈
S−1
iα,jβ

〉
〈A2
i,j〉

〈A2
iα,jβ

〉
〈Siα,jβ 〉
〈Si,j〉

= exp
(
σ2
s − σ2

s−1
)
. (S39)

The change of σ2 can be estimated from Fig. S2f. σ decreases from 0.73 to 0.40 as the block size increases from 1 to
212. Therefore, the influence of this approximation to the scaling exponent is

δλ =
log2 e

σ2
0−σ

2
12

log2 (n0/n12)
=

0.732 − 0.402

12 ln 2
= 0.04, (S40)

which is negligible.

B. The spatial profile of dissipation rate

Next, we investigate the spatial profile of dissipation. The local dissipation rate at site (i, j) is defined by the
average of the dissipation in all four links associated with it, namely

wi,j =
1

4

4∑
α=1

(
J(i,j)→(iα,jα) − J(iα,jα)→(i,j)

)
ln
J(i,j)→(iα,jα)

J(iα,jα)→(i,j)
. (S41)

(iα, jα) (α = 1, 2, 3, 4) are the four neighbors adjacent to (i, j), namely (i, j+1), (i, j−1), (i+1, j), and (i−1, j). The
local dissipation rate is self-similar in the sense of both its spatial profile and overall distribution. Fig. S4 demonstrates
the spatial profile of lnwi,j at the first three levels. The arrows indicate the direction of coarse-graining. The overall
profiles are similar.

Fig. S5 presents the statistical distribution of lnwi,j . The distribution at all scales collapse to a single distribution
function after shifting the mean to zero and scaling the standard deviation to one (Fig. S5b), which stands as another
example of self-similarity. Unlike the common distribution function for lnJ , which is Gaussian, the one found here
undoubtedly deviates from the standard Gaussian distribution. The mean and standard deviation of lnw are presented
in Fig. S5c–d.
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FIG. S4. Local dissipation rate profile in the square lattice (in log scale, plotting lnwi,j). (a) The original network of size
N = 1024. The transition rates follow a lognormal distribution with mean µ = 0 and standard deviation σ = 0.5. (b) The
lattice resulting from the coarse-graining of (a), of size N = 512. (c) The lattice resulting from the coarse-graining of (b), of
size N = 256.

C. The dissipation scaling law does not depend on the rate distribution.

It is apparent from the derivation in section IA of the SI that the dissipation scaling relation does not depend on
the exact form of initial transition rate distribution. To demonstrate this point, we performed all the studies in the
square lattice with transition rates sampled from three other distributions: Weibull distribution, gamma distribution,
and exponential distribution. The probability density function for these distributions are:

Weibull: f(x;λ, k) =
k

λ

(x
λ

)k−1
exp

(
−
(x
λ

)k)
(x > 0)

gamma: f(x;α, β) =
βα

Γ(α)
xα−1e−βx (x > 0)

exponential: f(x;µ) =
1

µ
exp

(
−x
µ

)
(x > 0)

(S42)

The last one is a special case of the gamma distribution (with α = 1).
Fig. S6 presents the results with these three distributions. The parameters are chosen as

k = 5, λ =
1

Γ(1 + 1/k)
; α = β = 2; µ = 1, (S43)

such that the mean of the transition rates is 1 in all three cases. In all three systems, the dissipation scaling behaviors
are identical to that displayed in Fig. 2c of the main text, with scaling exponents close to 1.35 (Fig. S6a–c). However,
the distribution of transition rates evolves differently (Fig. S6d–f). If the original transition rate distribution is
lognormal, it stays lognormal at all coarse-grained levels (Fig. 2a, main text). On the contrary, the distributions
here start with a considerable deviation from lognormal at the finest level but gradually converge to lognormal as
the system is coarse grained (Fig. S6g–i). In other words, the lognormal distribution is an stable attractor for the
transition rates distribution, i.e. the rates distribution at the RG fixed point. Since we are mainly concerned with the
scaling properties at the RG fixed point of the reaction network, it is reasonable to start with a lognormal distribution
and study the convergence or scaling of other properties as the system is coarse-grained. Therefore, it suffices to
consider only lognormal-distributed rates in all networks studied here.

D. The dissipation scaling law does not require the landscape to be flat.

In the main text, we focused on the flat landscape assumption to simplify the problem. However, the scaling
behavior reported in the text does not rely on this assumption. It is also applicable to energy landscapes that are not
flat and even spatially correlated.
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as functions of the block size.

1. Scaling law on a random rough landscape without spatial correlation

To begin with, we consider a rough energy landscape that has no spatial correlation: the energy levels of individual
states are independent and identically distributed (i.i.d.) Gaussian variables, whose probability distribution function
is given by:

Ei ∼ N (0, σE)⇔ P (Ei) =
1√

2πσ2
E

e
− E2

i
2σ2
E , P (Ei, Ej) = P (Ei)P (Ej) (S44)

The mean of the energy landscape is set to zero since it only sets the reference point and does not affect the transition
dynamics. The roughness of the landscape is characterized by the standard deviation σE . It has the same dimension
as the parameter σ in the lognormal distribution for γi,j , which characterizes the energy scale of the nonequilibrium
driving. For the sake of clarity, we use σγ to denote this latter σ in the following discussion. The reaction rates are
related to the energy landscape through Eq. 1 of the main text.

Fig. S7 presents the dissipation scaling relation in two example systems where the energy landscapes have different
roughness (σγ = 0.5, σE = 0.5; σγ = 0.5, σE = 2.5). This demonstrates that the scaling law reported in the main text
exists in systems with a rough landscape. The scaling exponent λ depends on the specific realization of the system
(because the rates are randomly drawn and the system is finite). Therefore, we tested the scaling laws for multiple
realizations for each different σE and confirmed that the scaling law remained valid. Moreover, the scaling exponents
λ also does not change with the roughness of the landscape (characterized by σE , see Fig. S8). The small fluctuation
in λ is only due to the sampling of γi,j in a finite system (N = 256).



S11

0 4 8 12
-5

-4

-3

-2

-1

0

0 4 8 12
-5

-4

-3

-2

-1

0

0 4 8 12
-5

-4

-3

-2

-1

0
a b c

-5 -4 -3 -2 -1 0 1
0

0.5

1

1.5

2

2.5

3

-6 -4 -2 0 2
0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d e f

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5
g h i

log2
n0

ns
log2

n0

ns
log2

n0

ns

ln k ln k ln k

P
ro
b
ab

il
it
y
D
en
si
ty

P
ro
b
ab

il
it
y
D
en
si
ty

P
ro
b
ab

il
it
y
D
en
si
ty

ln k−µln k

σln k

ln k−µln k

σln k

ln k−µln k

σln k

P
ro
b
ab

il
it
y
D
en
si
ty

P
ro
b
ab

il
it
y
D
en
si
ty

P
ro
b
ab

il
it
y
D
en
si
ty

Color

Block Size n0/ns 1 22 24 26 28 210 212 Standard Gaussian

Ẇ
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FIG. S6. Results in the square lattice where transitions follow Weibull distribution (left panel), gamma distribution (middle
panel), or exponential distribution (right panel). (a)–(c): The dissipation rate decreases in a power-law relation with the block
size. The scaling exponents from the least-square fit are 1.35, 1.35, and 1.33. (d)–(f): The distribution of ln k (k is the transition

rate) at different coarse-grained levels. (g)–(f) The distribution of ln k−µln k
σln k

at different coarse-grained levels, where µln k and

σln k are the mean and the standard deviation of ln k, respectively. The transformation shifts the mean to zero and scales the
standard deviation to 1 to allow the comparison between the shape of the probability density functions. The red curve is the
standard Guassian distribution p(x) = 1√

2π
exp

(
−x2/2

)
. The corresponding relation between the colors in histograms (d)–(i)

and the block sizes of coarse-grained levels are given at the bottom.

2. Scaling law on a random rough landscape with spatial correlation

Next, we show that the scaling relation is valid in an energy landscape that has a finite correlation length ξ0. To
demonstrate the effect of spatial correlation. We consider the following energy distribution:

Ei ∼ N (siε, σE) (S45)

where si are taken from a snapshot of spins in an equilibrium Ising model at a finite temperature T . {si} are therefore
correlated with one another, and so does the energy landscape {Ei}. The correlation length is determined by fitting
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FIG. S8. Scaling exponents on a rough energy landscape. σγ was evenly sampled in (0, 3] and has been averaged out. Errorbar:
1 standard deviation.

the correlation function to the following function

CE(r) = 〈EiEi+r〉 = Ax−1/4 exp

(
−x
ξ

)
. (S46)

The energy landscape, correlation function, and dissipation scaling relation of an example of such system are presented
in Fig. S9, where the correlation length is about ξ = 28. Indeed, the landscape is non-flat and has some local
correlated structure. However, as shown in the last panel, the dissipation scaling relation still holds. To demonstrate
the generality of our results, we extensively sampled the temperature T of the Ising model to examine the dissipation
scaling law in systems with correlation lengths ranging from ∼ 1 to those comparable to the system size. As shown in
Fig. S11, the correlation length ξ and the absolute dissipation rate Ẇ0 changes with temperature T , but the scaling
law holds in all these systems. This is not hard to imagine that the scaling law still holds in landscapes with long-range
correlation since increasing ξ has a similar effect of reducing σE . When ξ reaches the system size, we effectively get
a flat landscape, and the energy dissipation follows the same scaling law reported in the main text.

To conclude, we have shown numerically that the scaling law reported in the main text is applicable to random
energy landscapes that are rough and even spatially correlated.

3. Scaling law on a periodic energy landscape

Here we examine the dissipation scaling law in another form of energy landscape which is non-flat but regular.
More specifically, we consider a square lattice with the following landscape, which resembles the profile of standing
wave:

E(x, y) = AE sin
2πx

Λx
sin

2πy

Λy
(S47)

This landscape is fundamentally different from the random landscape due to the existence of a characteristic length
scale Λ = Λx = Λy. We demonstrate that the scaling relation is valid after the coarse-graining process goes across
this characteristic length scale Λ.
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FIG. S10. Scaling of energy dissipation at T = 0.95Tc (left) and T = 1.20Tc (right). The landscape for the left panel has a
larger correlation length. Parameters: µ = 0. ε = σE = σ = 0.5.

To examine the effect of this particular length scale, we construct landscapes on an N × N (N = 512) square
lattice with different characteristic length scale Λ and computed the dissipation rate at different coarse-grained levels
(Fig. S12). As the system is coarse-grained, the dissipation rate experiences a sudden drop and then collapse to the
same scaling relation (black dashed line) as reported in the flat landscape. We call the first point after the sudden
decrease in dissipation the onset of scaling. The results in Fig. S12 demonstrate that the onset is delayed by one
coarse-graining iteration every time the length scale Λ is doubled. This indicates that the onset of scaling takes place
when the scale of a coarse-grained state is comparable to the characteristic length scale Λ, and the scaling law holds
in all the following coarse-graining iterations.

Therefore, for regular systems with a characteristic length scale, the dissipation scaling law holds after coarse-
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FIG. S11. Summary of the calculations on a rough energy landscape. Left: the correlation length can be tuned by the
temperature parameter T . Middle: The total dissipation rate Ẇ0 increases with the correlation length ξ and saturates to the
value on a flat energy landscape. Right: The scaling exponent does not depend on T , and therefore does not depend on ξ. The
errorbar stands for one standard deviation. The spread of λ is due to the finite size of our system (N = 512). The parameters
are µ = 0. ε = σE = σ = 0.5.
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d m λ

4 4 1.057± 0.027

6 4 1.068± 0.021

6 6 1.070± 0.022

8 6 1.075± 0.020

10 6 1.077± 0.021

8 8 1.055± 0.015

TABLE S1. The dissipation scaling exponents of the random hierarchical network (mean ± one standard deviation, over
100 replica). The scaling exponent λ is close to 1, independent of the average degree d and the number of states with each
macroscopic state m.

graining goes across the characteristic length scale.

E. The random-hierarchical network

Table S1 presents the scaling exponents for different random hierarchical networks constructed with parameters d
(the average degree) and m (the average cluster size). The last column shows that the dissipation scaling exponent λ
is in close proximity to 1 regardless of d and m, corroborating the conclusion λRHN = 1 in the main text.

F. The scale-free network

First, we briefly summarize the construction of the 2D-embedded scale-free network, which was used in refs. [7, 8].
Briefly, the network is constructed by assigning degrees to all sites on a square lattice according to a power-law
distribution and fulfilling the degree requirements by considering the sites in a random order. For each site, we examine
its neighbors from close to distant and create links whenever possible, until the number of its links reaches its pre-
assigned degree or the search radius reaches an upper limit. The preference to connecting with nearer neighbors allows
us to use the coarse-graining method that group neighboring states together. Although not all degree requirements
can be satisfied, the resulted network is indeed scale-free, consistent with previous work [8]. The 2D-embedding allows
us to directly use the coarse-graining procedure employed in the square lattice, which preserves the probability fluxes
between coarse-grained states.

Next, we demonstrate the determination of α and dB with the example in Fig. S13. After creating the scale-free

network, we plot the cumulative degree distribution P (k) ∼
(
kmin

k

)α−1
(see Eq. S24) against k on a log-log scale and
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dL, in 56 different scale-free networks. The dashed line corresponds to perfect agreement λ = dL. The correlation coefficient is
0.65.

determine the slope α − 1 by linear fitting and therefore determine α. The index dB is obtained similarly by fitting
the power-law relation between the box size lB and the minimum number of boxes containing states whose pairwise
distance does not exceed lB that are needed to cover the entire graph, NB . Since finding the exact minimum NB(lB)
is NP-hard, we instead use a greedy coloring algorithm that is known to provide good approximations to the value of
NB(lB) [3].

The dissipation rate in the 2D-embedded SFN also scales with block size as a power law with the exponent λ
depending on the network structure (Fig. S14A). To test the estimation of λSF (Eq. 11 in the main text), we constructed
56 scale-free networks with α ∈ [5, 7] and kmin ∈ [3, 22] and computed the energy dissipation scaling exponent. As
shown in Fig. S14B, there is indeed a positive correlation between dL and λSF.

G. Networks without the dissipation scaling relation

Finally, we introduce two networks in which the dissipation does not obey a power-law relation with respect to the
block size after coarse-graining and discuss why this scaling relation breaks down.

1. The Erdős-Rényi random network

We create an Erdős-Rényi random network with a binomial model that is equivalent to the method used in the
classic paper by Erdős and Rényi [9]. To generate a network with average degree d, we connect each pair of states on
a N0 by N0 square lattice with a constant probability p = d

N2
0 (N

2
0−1)

. The coarse-graining is conducted in the exact

same way as that used in the 2D-embedded scale-free network. We find that the dissipation decreases with the block
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FIG. S15. The dissipation rate in the Erdős-Rényi random network and Watts-Strogatz small-world network. The initial
transition rates are drawn from lognormal distribution ln k ∼ N (µ, σ) with µ = 0 and σ = 0.4. (a) Results in Erdős-Rényi
random network with different average degrees 〈d〉 for N0×N0 nodes (N0 = 128). (b) Results in the Watts-Strogatz small-world
network with different rewiring probabilities β (square lattice with 256× 256 nodes).

size but does not follow a power-law relation (Fig. S15a). This is not unexpected since the coarse-graining completely
disregards the connectivity of the network. In the scale-free network, states are preferentially linked to neighbors
by construction, which relates the network topology with the geography of the square lattice. Hence, grouping
together geographically adjacent states during coarse-graining also means that states that are more interconnected
(i.e., neighbors) are more likely to belong to the same macrostate. In stark contrast, a state in an Erdős-Rényi random
network has equal probabilities of being connected to a state that belong to the same macrostate or a state that does
not. Therefore, the first few iterations of coarse-graining of the sparse network almost does not involve any link
merger, while the system approaches a complete graph at later rounds of coarse-graining with the number of links
rapidly decreasing. The discrepancy between early and later stages of coarse-graining reveals the lack of self-similarity
in the Erdős-Rényi random network, which inevitably leads to the absence of dissipation scaling.

2. The Watts-Strogatz small-world network

The Watts-Strogatz network can be created by randomly rewiring the links in a regular square lattice with prob-
ability β ∈ (0, 1) [10]. Coarse-graining can be carried out in the same fashion as scale-free network and Erdős-Rényi
random network. The network approaches a square lattice as β → 0 and approaches the Erdős-Rényi random network
as β → 1. Therefore, we expect the dissipation to scale with the block size as β tends to 0 and to breaks down as β
is increased. Indeed, this is what we find numerically (Fig. S15b). The same arguments used in the random network
can be employed to account for the breakdown of the scaling property here.

III. DISSIPATION SCALING IN BIOCHEMICAL SYSTEMS

In this section, we utilize the coarse-graining method to study three realistic biochemical reaction systems discussed
in the main text and elucidate the scaling bahavior of dissipation in these systems.

A. Brusselator

a. The Brusselator model and state-space coarse-graining. The Brusselator is one of the biochemical network
motifs that generate sustained oscillation [12, 13]. To incorporate dissipation calculation, we take the reversible
Brusselator model studied in a previous work [14] and study the thermodynamic effect of coarse-graining the state
space. The reactions are described by

k1 k02 k3
A
 X; B +X 
 D + Y ; 2X + Y 
 3X,

k−1 k0−2 k−3

(S48)
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FIG. S16. Illustration of the coarse-graining of the Brusselator model. The states in the colored shades in the left panel are
merged to states with the same color in the right panel. The red links are those connecting the light blue coarse-grained state
with the six neighboring coarse-grained states (red, orange, yellow, green, purple, dark blue). (A) The first coarse-graining
operation changes the network topology by creating links along the y direction. (B) All subsequent coarse-graining operations
do not change the topology of the network.

We construct the state space on a 2D lattice with coordinates (nX , nY ) denoting a system having nX molecules of X
and nY molecules of Y . The concentrations of all molecular species other than X and Y are considered constants and
absorbed into the reaction rates. Following ref. [14], we choose parameter values [A] = 1, k±1 = 1, k2 = k02[B] = 1

γ1
,

k−2 = k0−2[D] = γ2, and k±3 = 1. The irreversibility parameter γ = γ1γ2 6= 1 indicates that the system is out of
equilibrium and hence dissipative. We consider the system to be well-stirred with a fixed volume V . The master
equation which governs the dynamics of the probability distribution Pnx,ny (t) in the state space reads:

dPnx,ny (t)

dt
=k1Pnx−1,ny (t) + k−1

nx + 1

V
Pnx+1,ny (t) + k2

nx + 1

V
Pnx+1,ny−1(t)

+ k−2
ny + 1

V
Pnx−1,ny+1(t) + k3

(nx − 1)(nx − 2)(ny + 1)

V 3
Pnx−1,ny+1(t)

+ k−3
(nx + 1)nx(nx − 1)

V 3
Pnx+1,ny−1(t)

−
[
k1 + k−1

nx
V

+ k2
nx
V

+ k−2
ny
V

+ k3
nx(nx − 1)ny

V 3
+ k−3

nx(nx − 1)(nx − 2)

V 3

]
Pnx,ny (t),

(S49)

The steady-state probability distribution can be solved for from the master equation
dPnx,ny (t)

dt = 0, and the coarse-
graining can be done by combining four neighboring states together while conserving the net fluxes, which is similar
to the protocol used in the square lattice except for the extra diagonal link. Fig. S16 illustrates the reaction dynamics
in the state space, including how this model is coarse-grained into a regular lattice with horizontal, vertical, and
diagonal links. In the first (original) network, there are only horizontal and diagonal links. The first coarse-graining
process combines four adjacent states together, creating the vertical links in the coarse-grained network (Fig. S16A,
left → right). The subsequent coarse-graining operations do not change the structure of the network (Fig. S16B, left
→ right). This remains as the structures of all coarse-grained networks (self-similarity).

For numeric studies, we construct this state space with cutoffs nx ≤ nx,max = 500 and ny ≤ ny,max = 500. The
volume is set to V = 50.

b. Scaling of energy dissipation due to coarse-graining the state space of Brusselator. To elucidate the effect of
state-space coarse-graining in Brusselator, we study a specific system with γ1 = 0.2 and γ2 = 0.1, whose results are
summarized in Fig. S17. The left panel illustrates the evolution of number of molecules X and Y governed by the



S18

0 500 1000 1500 2000

0

50

100

150

200

250

300

350

0 4 8 12 16
10

-15

10
-10

10
-5

10
0

10
5

FIG. S17. Scaling of dissipation in an oscillating Brusselator with nonequilibrium parameters γ1 = 0.2 and γ2 = 0.1. Left:
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deterministic ordinary differential equations1:

dnX(t)

dt
= k1 − k−1

nX
V
− k2

nX
V

+ k−2
nY
V

+ k3
n2XnY
V 3

− k−3
n3X
V 3

dnY (t)

dt
= k2

nX
V
− k−2

nY
V
− k3

n2XnY
V 3

+ k−3
n3X
V 3

(S50)

Indeed, the dynamics of the number of molecules indicate that the Brusselator is in oscillation. The middle panel plots
the state-space probability distribution overlaid with the limit cycle of the deterministic system (red circle), which is
in agreement with Fig. 2b of ref. [14]. The center of the limit cycle is located at (〈nx〉, 〈ny〉) = (50, 283). Finally, the
right panel demonstrates the dissipation rate at different coarse-grained levels. The first coarse-graining operation
changes the structure of the network (see Fig. S16A) and results in a significant decrease in the dissipation rate.
The subsequent coarse-graining operations preserve the structure of the network (see Fig. S16B), and the dissipation
rate scales following a power-law as reported for self-similar networks in the main text. This illustrates the general
applicability of the scaling law to the coarse-graining of the state space of realistic biochemical reaction networks. For
the Brusselator model, the link exponent is dL = 1. Thus, the observed exponent λ < 1 implies that the correlation
between fluxes is positive: C? > 0.

After a certain number of coarse-graining operations, the dissipation rate drops drastically and exits the regime
described by the scaling law (the last two points fall below the dashed line in Fig. S17, right panel). This can be
understood by looking at the state space of the coarse-grained system. The significant decrease in dissipation rate

1 These are in principle the equations that govern the evolution of concentrations [X] and [Y ] in the V → ∞ limit. Here we apply it to
our finite system with nX = V [X] and nY = V [Y ] to illustrate the location of the limit cycle.
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oscillation of the number of molecules nX and nY ; right: scaling of energy dissipation as a result of coarse-graining.

takes place between log2
n0

ns
= 12 and log2

n0

ns
= 14 (Fig. S17, right panel), which correspond to coarse-graining the

state space from the left panel to the right panel of Fig. S18. After this coarse-graining iteration, there are only
two states with a significant probability (yellow and cyan). Since there are only one link between these two states,
they are almost in equilibrium, and the dissipation becomes very small. Therefore, there is an upper limit of the
coarse-graining iterations which terminates the scaling relation. After crossing the upper limit, the system has too
few states, and the dissipation rates becomes very small.

c. Scaling does not rely on oscillation. The dissipation in Brusselator stems from the breaking of detailed balance
(γ 6= 1) and does not depend on the system to be in the oscillation phase. Even when the system is not oscillating,
the existence of net probability fluxes still leads to a positive dissipation, which then follows the scaling law reported
in the main text.

To illustrate this point, we consider another parameter combination γ1 = γ2 = 0.2, which does not lead to oscillation
(Fig. S19, left panel). Subjecting the system to the same coarse-graining process reveals a dissipation scaling relation
(Fig. S19, middle panel) that’s qualitatively the same as that for the oscillating Brusselator (Fig. S17, right panel).
These results highlight the applicability of the scaling law to general (not necessarily oscillating) nonequilibrium
systems, especially open biochemical reaction systems.

d. Connecting mesoscopic probability fluxes with microscopic dissipation. Nonequilibrium systems are character-
ized by broken detailed balance, which can be experimentally quantified by measuring the probability fluxes through
chemical states at the mesoscopic scale [15, 16]. However, the results reported here indicate that the dissipation
calculated from mesoscopic fluxes will be an underestimate of the real dissipation, which should in principle be calcu-
lated from the microscopic fluxes. While such microscopic measurements might not be experimentally feasible (e.g.
due to the uncertainty in the number of molecules nx and ny), our scaling law provides a useful tool for scaling the
dissipation from the mesoscopic level back to the microscopic level in a nonequilibrium system.

B. Microtubule-kinesin active flow system

We consider an active matter mixture composed of microtubule filaments and kinesin motors. Despite the macro-
scopic nematic order, individual MT filaments are polar entities, which can be transported by kinesin only in one
direction. In this section, we construct a kinetic model of the MT-kinesin mixture that falls within the scope of the
random flux model and demonstrate that the scaling law reported in the main text holds regardless the details of the
model.

a. The microscopic model. Inspired by the passive scalar behavior in turbulence [17], we study the dynamics
of a single microtubule filament as a proxy for the dynamics at the population level. The MT filament is a polar
object that undergoes two processes: rotation and transport. For illustrative purposes, we focus on the 2D model,
which can be easily generalized to 3D. The microscopic model and its coarse-graining are demonstrated in Fig. S20.
Essentially, we discretize the 2D space into N × N states on a square lattice and the polarity of microtubule into
four discrete orientations. Fig. S20A illustrates the dynamics on a single spatial location. The four colors encode
four discrete microscopic states with orientations left (yellow), right (red), up (green), and down (blue). Within each
spatial locations, the MT can change its orientation by 90 degrees with the switching rate ω (for example, red to
green, red to blue). However, the MT cannot reverse its orientation in one step (red cannot directly go to yellow).
The MT can also be transported along its orientation with rates ki,j,p, where p = ±1,±2,±3,±4 encodes the MT
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FIG. S20. Illustration of the MT-kinesin mixture model. (A) the microscopic model of a single spatial location. The four colors
(red, yellow, green, blue) correspond to four spatial orientations of the microtubule. The microtubule can change its orientation
by switching to a neighboring orientational state with rate ω (black arrows), or be transported by kinesin motors along its
orientation to an adjacent spatial location (colored arrows). (B) nonequilibrium transport of microtubules by kinesin. The
orange kinesins are attached to microtubules with different polarities and contribute to the active transport. The black kinesin
is attached to microtubules with the same polarity and does not contribute to their active transport. For the microtubule in
the middle, the number of kinesin motors facilitating the transport to the right is ni,j,1 = 3. The forward and backward rates
ki,j,±1 are given in the text. (C) the microscopic model for 9 adjacent spatial locations (each denoted by a gray-shaded circle
with bidirectional links representing rotation). The orientation of microtubules is preserved after transport. (D) the model
after the first coarse-graining process which integrates out the orientational degree of freedom. The states on the same circle
in (C) are now combined into a single state. The network structure is identical to the square lattice reported in the main text,
and the subsequent coarse-graining processes preserve self-similarity.

polarity. The forward transport rates along direction p (p = 1, 2, 3, 4) are chosen as

ki,j,p = kd + k̃i,j,p, (S51)

where kd corresponds to the rate for thermal diffusive transport and the term k̃i,j,p = k0ni,j,p corresponds to active
transport facilitated by kinesin motors. k0 is a coefficient that’s proportional to the concentration of ATP. ni,j,p
denotes the number of kinesin motors facilitating the transport along the p direction at site (i, j). For thermodynamic
consistency, the backward transport rates are given by

ki,j,−p = kd + k̃i,j,p exp(−ni,j,p∆µ0), (S52)

where ∆µ0 is the free energy dissipation in ATP hydrolysis, which is coupled with kinesin stepping. Only the kinesin
motors between microtubules of opposite polarities contribute to the active transport. Fig. S20B illustrates the details
of the transport process which involves kinesin motors (orange and black linkers) walking on MTs (red and yellow
segments). Following the denotation in Fig. S20A, the red segments and yellow segment have the opposite polarity.
For the red MT in the middle, only orange motors contribute to the active transport, namely ni,j,1 = 3. The number
of motors follows a Gaussian distribution ni,j,p ∼ N (µ, σ). It is nonetheless not necessary for the rates to take this
form in order to have the scaling behavior of dissipation rates since a previous SI section has demonstrated that the
scaling behavior does not depend on the exact form of the rate distribution.

Fig. S20C illustrates the full dynamics of rotation and transport between a few neighboring spatial locations. Note
that the transport does not change the MT orientation. The central red state, for example, corresponds to a MT
oriented to the right, which can only be transported to another red state to the left or right.

To sum up, the MT dynamics is characterized by the dynamics a reaction network with N × N × 4 microscopic
states, whose dynamics and energy dissipation rate are fully described by the chemical master equation formalism
described in the main text.

b. Coarse-graining and dissipation scaling. Next, we consider the coarse-graining of this model and elucidate the
dissipation scaling behavior. The first coarse-graining operation effectively merge the four orientational states within
the same spatial location (Fig. S20C→D). The resulting network is exactly the regular lattice network studied in the
main text. The subsequent coarse-graining operations correspond to the merger of spatially neighboring states in the
exact same way as Fig. 2A of main text. Fig. S21 plots the dissipation rate at different coarse-grained levels for three
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FIG. S21. The scaling of dissipation rate in the MT-kinesin model with different switching rates: ω = 0.1 (left), ω = 1 (middle),
and ω = 10 (right). The parameters are: k0 = 1, kd = 0.1, and µ = 6, σ = 2 for the Gaussian distribution of the number of
motors. These parameters and ω = 10 are used for Fig. 3D in the main text.

different switching rates ω. Indeed, they exhibit a power-law scaling behavior with the exception of the first point.
This is consistent with our theory since the first coarse-graining operation changes the topology of the network by
merging the four orientation states, while the subsequent coarse-graining procedures preserve the self-similarity of
the network (square lattice). The scaling exponent λ depends on the switching rate ω. For sufficiently large ω, the
four orientation states achieve fast equilibrium and can be considered equivalent. In other words, a quarter of the
MT point towards each of the four directions at the population level. In this limit, the orientation degree of freedom
becomes trivial. The scaling exponent approaches that of the random flux model reported in the main text (Fig. S21,
right panel). The scaling exponent λ is smaller for smaller ω.

c. Correlation in ni,j,p does not change the scaling behavior. In the realistic MT-kinesin system, both the number
of kinesins ni,j,p and the MT density (probability density of discrete states Pi,j,p) are spatially correlated. Here, we
demonstrate that the spatial correlation does not affect the existence of a dissipation scaling relation. In particular,
the correlation is introduced by ni,j,p = si,j,pn0, where n0 is a constant and si,j,p is taken from a snapshot of an
equilibrium Ising model on an N ×N lattice. The number of kinesins transporting MT in different directions are not
correlated (i.e. 〈ni,j,p1ni,j,p2〉 − 〈ni,j,p1〉〈ni,j,p2〉 = 0 if p1 6= p2). Fig. S22 demonstrates that the scaling relation exists
for systems with different correlation lengths of ni,j,p.

To show that our model reproduces the experimentally observed MT dynamics (alignment and spatially correlated
active flow), we present the typical orientation field and coarse-grained flow field of our model in Fig. S23. For
each spatial location (i, j), the probability of MT being in horizontal and vertical orientations are Pi,j,1 + Pi,j,3 and
Pi,j,2 + Pi,j,4. The alignment ordering is visualized by coloring each location to the orientation whose probability is
larger than 50%. (Namely, the site is colored yellow if Pi,j,1+Pi,j,3 > Pi,j,2+Pi,j,4 and blue if otherwise.) As shown in
the left panel of Fig. S23, the orientation of microtubules are spatially correlated, forming the nematic ordering that
was experimentally observed [18]. The flow of microtubules is characterized by the probability flow in our system,
which is visualized in the right panel of Fig. S23. The probability flow is spatially correlated and resembles the spatial
MT flow that was experimentally observed [18].

The above model can be easily generalized to 3D, where each spatial location splits to 6 microscopic state. The
analysis here indicates that the dissipation scaling behavior after the first coarse-graining (merger of orientation states)
should resemble that of the cubic lattice. The analysis related to the 3D experiment system is presented in the main
text.

IV. HIDDEN FREE ENERGY COSTS IN THE COARSE-GRAINED NETWORK

In this section, we elucidate the physical origin of the difference between dissipation at fine-grained and coarse-
grained levels of the network. For the sake of illustration, let’s first consider the regular lattice in Fig. 1A of the main
text. Let Ẇ0 be the dissipation rate at the finest-grained level. This dissipation rate can be decomposed into three
components

Ẇ0 = Ẇ
(1)
0 + Ẇ

(2)
0 + Ẇ

(3)
0 , (S53)
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FIG. S22. The scaling of dissipation rate in the MT-kinesin model where the kinesin numbers ni,j,p are spatially correlated.
The correlation lengths are ξ ∼ 2.6 (left), ξ ∼ 4.7 (middle), ξ ∼ 24 (right). The parameters are: k0 = 1, kd = 0.1, ω = 0.01,
and µ = 6, σ = 2 for the Gaussian distribution of the number of motors.
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FIG. S23. Simulation results where the number of kinesins ni,j,p is spatially correlated (correlation length ξ ∼ 30). Left: The
stochastic orientation field of the MT-kinesin model. Yellow and blue denote horizontal and vertical orientations, respectively.
Right: The coarse-grained (averaged in 8× 8 squares) fluxes form a spatially correlated pattern.

all of which are nonnegative [11]. The first term Ẇ
(1)
0 represents the dissipation associated with the coarse-grained

transitions between CG states, which is exactly the total dissipation rate of the first CG level Ẇ1:

Ẇ
(1)
0 = Ẇ1 = 4−λẆ0 =

1 + C∗

4
Ẇ0. (S54)

The second term Ẇ
(2)
0 is the dissipation caused by transitions within each CG state, which necessary for sustaining

the internal nonequilibrium steady state. In the homogeneous lattice we study, this is proportional to the number of
internal links:

Ẇ
(2)
0 =

Linternal

Ltotal
Ẇ0 =

1

2
Ẇ0, (S55)

where Linternal = N2 is the number of internal links and and Ltotal = 2N2 is the total number of links in a regular
lattice of size N .

The third term Ẇ
(3)
0 is associated with merging multiple (in this case, two) reaction pathways into one during

coarse-graining. As shown in the example Fig. 1A in the main text, the two pathways i2 ↔ j1 and i4 ↔ j3 are
merged into a single reaction i↔ j. The randomness in which of the two microscopic transitions actually happened
when a (macroscopic) transition between CG states i and j is observed contributes to this extra term of dissipation.
Concretely, the total dissipation rate in the two microscopic pathways is

σ0(i, j) = (Ji2,j1 − Jj1,i2) ln
Ji2,j1
Jj1,i2

+ (Ji4,j3 − Jj3,i4) ln
Ji4,j3
Jj3,i4

. (S56)
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The total dissipation for the coarse-grained pathway is

σ1(i, j) = (Ji2,j1 + Ji4,j3 − Jj1,i2 − Jj3,i4) ln
Ji2,j1 + Ji4,j3
Jj1,i2 + Jj3,i4

. (S57)

Their difference leads to Ẇ
(3)
0 . Following the same method in section I.A.1 of the SI, we decompose the fluxes into

symmetric and antisymmetric components to determine the average ratio of σ1 to σ0, which reads〈
σ1(i, j)

σ0(i, j)

〉
=

1

2

〈
(Ai2,j1 +Ai4,j3)

2

A2
i2,j1

+A2
i4,j3

〉
=

1 + C?

2
(S58)

Since C? < 0, the dissipation in the coarse-grained pathway is always smaller than the sum of dissipation in the two

microscopic pathways. Their difference (σ0(i, j)− σ1(i, j)) makes up the third term Ẇ
(3)
0 . We sum up such terms

over the entire network:

Ẇ
(3)
0 =

∑
i<j

(σ0(i, j)− σ1(i, j)). (S59)

On the other hand, the total dissipation rate of microscopic transitions between different CG states is

Ẇ0 − Ẇ (2)
0 =

1

2
Ẇ0 =

∑
i<j

σ0(i, j). (S60)

Therefore Ẇ
(3)
0 can be simplified to

Ẇ
(3)
0 =

1

2
Ẇ0

(
1−

〈
σ1(i, j)

σ0(i, j)

〉)
=

1− C?
4

Ẇ0. (S61)

It can be verified that the sum of the three components in Eq. S54, S55 and S61 exactly makes up the total dissipation
Ẇ0 (Eq. S53).

The decomposition suggests that the dissipation that is missing at the coarse-grained levels consists of two compo-
nents: Ẇ (2), which arises from ignoring transitions within coarse-grained states, and Ẇ (3), which stems from merging
the transition pathways between coarse-grained states. The former maintains the internal nonequilibrium state of CG
states, and the latter is associated with the multiplicity of ways in which a macroscopic transition can occur. Each of
the microscopic pathways has a different nonequilibrium driving force γ.

The partitioning ratios Ẇ (i)/Ẇ (i = 1, 2, 3) can also be numerically determined for comparison with the analytic
results in Eq. S54, S55 and S61. The result is presented in Fig. S24, which shows that the ratios converge to their
predicted value (dashed lines) as the system is coarse-grained.
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