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The energy dissipation rate in a nonequilibrium reaction system can be determined by the reaction rates in
the underlying reaction network. By developing a coarse-graining process in state space and a corresponding
renormalization procedure for reaction rates, we find that energy dissipation rate has an inverse power-law
dependence on the number of microscopic states in a coarse-grained state. The dissipation scaling law
requires self-similarity of the underlying network, and the scaling exponent depends on the network
structure and the probability flux correlation. Existence of the inverse dissipation scaling law is shown in
realistic biochemical systems such as biochemical oscillators and microtubule-kinesin active flow systems.
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Living systems are far from equilibrium. Energy dis-
sipation is critical not only for growth and synthesis but
also for more subtle information processing and regulatory
functions. The free energy dissipation is directly related to
the violation of detailed balance—a hallmark of nonequili-
brium systems—in the underlying biochemical reaction
networks [1]. In particular, driven by energy dissipation
[e.g., adenosine triphosphate (ATP) hydrolysis], these
biochemical systems can reach nonequilibrium steady
states (NESS) that carry out the desired biological function.
One of the fundamental questions is how much energy
dissipation is needed for performing certain biological
function. Indeed, much recent research has been devoted
to understanding the relation between energy cost and
performance of biological functions such as sensing and
adaptation [2,3], error correction [4,5], and accurate timing
in biochemical oscillations [6] and synchronization [7].
Quantitatively, the free energy dissipation rate can be

determined by computing the entropy production rate in the
underlying stochastic reaction network given the transition
rates between all microscopic states of the system [8,9].
However, for complex systems with a large number of
microscopic states, the system may only be measured at a
coarse-grained level with coarse-grained states and coarse-
grained transition rates among them. By following the same
procedure for computing entropy production rate, we can
determine the energy dissipation rate at the coarse-grained
level. Although it is known that coarse graining reduces
entropy production [10,11], the quantitative relation
between the coarse-grained energy dissipation rate and
the “true” dissipation rate obtained at the microscopic
level remains elusive. Here, we connect dissipation at
different scales by developing a coarse-graining procedure
inspired by the real space renormalization group (RG)
approach by Kadanoff [12,13] and applying it to various

reaction networks in the general state space, which
include both physical and chemical state variables. We
find that the energy dissipation rate follows an inverse
power law dependence on the coarse-graining scale in
a wide range of nonequilibrium systems, including
microtubule-kinesin active flow systems [14] and bio-
chemical oscillators [15,16].
Nonequilibrium reaction network and dissipation rate.—

Each node in a reaction network represents a state of the
system and each link represents a reaction with the
transition rate from state i to state j given by

ki;j ¼ k0i;jγi;j ¼
2k0

1þ expðΔEi;j=kBTÞ
γi;j; ð1Þ

where k0i;j represents the equilibrium reaction rates and
ΔEi;jð¼Ei − EjÞ is the energy difference between states i
and j. We set k0 ¼ 1 for the timescale and kBT ¼ 1 for the
energy scale. The equilibrium rates satisfy detailed balance
k0i;j=k

0
j;i ¼ e−ΔEi;j and γi;j represents the nonequilibrium

driving force. For a given loop ðl1; l2;…; ln; l1Þ of size n
(lnþ1 ¼ l1) in the network, we define a nonequilibrium
parameter Γ as the ratio of the product of all the rates
in one direction over that in the reverse direction:
Γ ¼ Πn

k¼1½ðγlkþ1;lkÞ=ðγlk;lkþ1
Þ�. The system breaks detailed

balance if there is one or more loops for which Γ ≠ 1. The
steady-state probability distribution fPss

i g can be solved
from the master equation:

P
jðkj;iPss

j − ki;jPss
i Þ ¼ 0 with

normalization
P

i P
ss
i ¼ 1. The steady-state dissipation

(entropy production) rate is given by [8,9]

_W ¼
X
i<j

ðJi;j − Jj;iÞ ln
Ji;j
Jj;i

; ð2Þ
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where Ji;j ¼ ki;jPss
i is the steady-state probability flux from

state i to state j.
State space renormalization and dissipation scaling.—

The network can be coarse grained by grouping subsets of
highly connected (neighboring) states to form a coarse-
grained (CG) state while conserving both total probability
of the state and the total probability flux between states. For
example, when we group two sets of microscopic states,
ði1; i2;…; irÞ and ðj1; j2;…; jrÞ, to form two CG states i
and j, the probability of each CG state is the sum of the
probability of all constituent states,

Pss
i ¼

Xr

α¼1

Pss
iα
; Pss

j ¼
Xr
α¼1

Pss
jα
: ð3Þ

The transition rates in the CG system is renormalized to
preserve the total probability flux from state i to j,

ki;j ¼
Ji;j
Pss
i
¼ 1

Pss
i

X
ðα;βÞ

Jiα;jβ ¼
P

ðα;βÞkiα;jβP
ss
iαP

r
α¼1 P

ss
iα

: ð4Þ

Figure 1(a) demonstrates an example in a square lattice
with r ¼ 4. The red links correspond to transitions that
survive the coarse-graining process with their reaction rates
renormalized according to Eq. (4). The black links re-
present internal transitions that are averaged over during
coarse graining. The dissipation rate of the CG system can
be computed from Eq. (2) with the renormalized proba-
bility distribution [Eq. (3)] and transition rates [Eq. (4)].
For a microscopic system with n0 states, coarse graining

s times leads to a system with ns states. Each state in the
CG system hence contains n0=ns original states. We define
n0=ns as the block size, which is used to characterize the
degree (scale) of coarse graining. Our main result is that the
dissipation rate of the CG system _WðnsÞ scales as an

inverse power law with respect to the block size for a
diverse class of reaction networks,

_WðnsÞ
_Wðn0Þ

¼
�
n0
ns

�
−λ
; ð5Þ

where λ is the dissipation scaling exponent. Furthermore,
the exponent λ depends on the structure of the network with
an unifying expression for the networks we studied,

λ ¼ dL − logrð1þ C�Þ; ð6Þ

where r ¼ ns=nsþ1 is the number of fine-grained states in a
next-level CG state, and the link exponent dL is defined as
the scaling exponent of the total number of links (reactions)
L with respect to the block size,

dL ≡ ln½LðnsÞ=Lðn0Þ�
lnðns=n0Þ

: ð7Þ

C� is the average correlation between probability fluxes
defined as

C� ¼ hAiα;jβðAi;j − Aiα;jβÞiiα;jβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2

iα;jβ
iiα;jβhðAi;j − Aiα;jβÞ2iiα;jβ

q ; ð8Þ

where Ax;y ¼ Jx;y − Jy;x is the net flux between states x and
y, and ðAi;j − Aiα;jβÞ is the sum of other fluxes that are
merged with Aiα;jβ during coarse graining. The detailed
derivation of Eq. (6) is provided in Sec. I of the
Supplemental Material [17].
In the rest of the paper, we demonstrate the energy

dissipation scaling in different types of extended networks.
For simplicity, we focus on the simplest case with a flat
energy landscape (ΔEi;j ¼ 0) and a random nonequili-
brium force γi;j that follows a log normal distribution,
namely, lnðγi;jÞ ∼N ðμ; σÞ. Other forms of energy land-
scape and rate distributions are studied without affecting
the general scaling results (see Sec. II in the Supplemental
Material [17] for details).
Regular lattice.—We first consider a N0 × N0 square

lattice network, where the coarse graining is done by
grouping four (¼ 2 × 2) neighboring states at one level
to create a CG state at the next level iteratively [Fig. 1(a)].
Both transition rates and the overall dissipation evolve as
the system is coarse grained. As shown in Fig. 2(a), the
renormalized transition rates follow log normal distribu-
tions at all CG levels, i.e., ln k ∼N ðμ; σÞ, with mean and
variance decreasing with the block size [Fig. 2(b)].
Consequently, the dissipation rate also decreases with
coarse graining. Remarkably, the dissipation rate decreases
with the block size by following a power law [Fig. 2(c),
blue circle]. The numerically determined scaling exponent
λ2D ¼ 1.35 suggests that the dissipation rate decreases

(a)

(b)

FIG. 1. (a) Illustration of the coarse-graining process in square
lattice. All states in the shaded area (blue or green) are merged to
form the new CG state. The red links are combined together to
form the transition reaction between the new states, while black
links correspond to internal transitions that are removed in
the CG model. (b) Illustration of the growth mechanism in
random hierarchical network. The example here corresponds to
m ¼ 6, d ¼ 2.
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faster than the block size. As the number of links is
inversely proportional to the block size in a regular lattice,
we have dL ¼ 1. According to Eq. (6), the dissipation
scaling exponent λ2D ¼ 1 − log4ð1þ C�Þ, where C�
denotes the probability flux correlation coefficient defined
in Eq. (8). C� can be calculated from direct simulations
[Fig. 2(d), blue circles], and it appears to decrease with the
block size and converges to a fixed point ∼ − 0.50 (by
extrapolation), which corresponds to a scaling exponent of
λ ¼ 1.50 at the infinite size limit. For the finite systems
studied here, the correlation coefficient C� is larger than its
infinite size value, and the exponent found in our simu-
lations is slightly smaller (λ2D ¼ 1.35 < 1.50).
The 2D results can be generalized to regular lattice in

higher dimensions, where dL ¼ 1 and the correlation
coefficient C� converges to a fixed value dependent on
the dimension. For example, the numerically determined
scaling exponent in the cubic regular lattice is λ3D ¼
1.23 > 1 [Fig. 2(c), green triangles] as C� in 3D is found
to converge to a value slightly greater than its 2D value
[Fig. 2(d), green triangles).
Random hierarchical network.—To investigate the dis-

sipation scaling behavior in networks with irregular struc-
tures, we introduce the random hierarchical networks

(RHNs), which share some features of the regular lattice,
such as the conservation of average degree at different CG
levels. However, links among neighboring states in RHNs
are created randomly. A RHN is constructed from a small
initial network with ns states by an iterative growth process.
In each growth iteration, each macrostate splits into m
microstates with ðmdÞ=4 links randomly created among
them. Each link then splits into m=2 links by randomly
choosing m=2 distinct pairs of microstates that belong to
the two macrostates and connecting them pairwise. In this
way, the average degree d is preserved in all of the CG
levels. Each growth step results in an m-fold increase in
both the number of states and the number of links, leading
to dL ¼ 1, however, the local reaction links are randomly
chosen in RHNs.
The coarse-graining process follows precisely the rever-

sal of the growth procedure. As shown in Fig. 2(c) (red
squares), the dissipation rate in RHNs also scales with the
block size in a power-lawmanner with the scaling exponent
λRHN ≈ 1 regardless of the choices of parameters (d and m)
used to grow the RHN (see Table S1 in the Supplemental
Material [17] for details). In RHNs, the flux correlation C�
vanishes at the RG fixed point [Fig. 2(d), red squares] due
to the randomness of reaction links. Therefore, according to
Eq. (6), we have λRHN ¼ dL ¼ 1 independent of d or m.
The RHN can be considered as a mean-field generalization
of a regular lattice of dimension log2m. In both cases, the
link exponent dL ¼ 1, the different dissipation scaling
exponents come from the different flux correlation C�.
Scaling requires network self-similarity.—We next study

how the dissipation scaling depends on topology of the
network by considering embedded scale-free networks
(SFNs) characterized by a power-law degree distribution
pðkÞ ∝ k−α (k ≥ kmin) [17,23–26]. We find that the dis-
sipation rate in the 2D-embedded SFN also scales with
block size as a power law with the exponent λ depending on
the link exponent dL and flux correlation coefficient C� as
given in Eq. (6). Because of the local randomness in SFNs,
we expect C� ≈ 0 as in RHNs, and dL depends on the
fractal dimension dB and exponent α of the embedded SFN
(see Sec. I in the Supplemental Material [17] for detailed
derivation). However, the dissipation scaling relation does
not exist in all networks. For example, even though the
dissipation rate decreases with coarse graining in both
Watts-Strogatz small-world network [27] and the Erdős-
Rényi random network [28], the scaling law defined by
Eq. (5) is not satisfied in either of these networks (see
Fig. S15 in the Supplemental Material [17]). The existence
of the dissipation scaling law depends on whether the
network has self-similarity, i.e., whether the CG process
converges the network to the complete-graph fixed point or
a self-similar (fractal) fixed point [29]. The regular lattices,
RHNs, and SFNs converge to a self-similar fixed point, i.e.,
networks at all CG levels are structurally similar and
properties like the number of links (reactions) and total
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FIG. 2. (a) Probability density function (PDF) of ln ki;j at
different CG levels (from left to right, coarse to fine grained).
Inset: normalized PDF all collapse to a standard Gaussian
distribution. (b) Mean (μ) and standard deviation (σ) of the
ln ki;j distribution as a function of the block size n0=ns.
(c) Power-law relation between the scaled dissipation rate
_Ws= _W0 and the block size n0=ns, in square lattice (blue circle),
cubic lattice (green triangle), and random hierarchical network
(red square, d ¼ m ¼ 4). (d) Correlation coefficient C�

s of the
three systems plotted in (c).
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dissipation rate all scale in a power-law fashion. However,
in the small-world network or the Erdős-Rényi network, the
CG process eventually generates a complete graph with all
nodes directly connected.
Dissipation scaling in biochemical systems.—Here, we

demonstrate the general dissipation scaling behavior in two
biochemical systems with their state variables defined in
chemical and physical space, respectively.
(1) The Brusselator model: The Brusselator model

describes a class of biochemical systems that can generate
sustained oscillations [15,30]. Here, we study the dissipa-
tion scaling in the reversible Brusselator model [16] where
dynamics of molecules X and Y are given by the following
multimolecular chemical reactions:

A⇌
k1

k−1
X; Bþ X⇌

k0
2

k0−2

Dþ Y; 2X þ Y ⇌
k3

k−3
3X;

with constant reaction rates (k’s) and constant concentra-
tions for auxiliary molecules A, B, and D. As shown in
Fig. 3(a), the chemical state space of the Brusselator model
is spanned by two state variables nx and ny that represent
the number of X and Y molecules, respectively. Different
from the random flux model, transition rates in the
Brusselator reaction network depend deterministically
on the state variables nx and ny (see Sec. III in the
Supplemental Material [17] for details). In addition, the
Brusselator network has diagonal links (reactions) that
convert between X and Y molecules. Despite these

differences, the same coarse-graining procedure can be
applied to study dissipation scaling in the Brusselator
model. As shown in Fig. 3(b), dissipation rate of the
Brusselator model follows a power-law dependence on the
block size with an exponent λ ≈ 0.56.
(2) The microtubule-kinesin system: The state space

coarse-graining process and the dissipation scaling analysis
can be applied to active matter systems, e.g., a microtubule-
kinesin mixture where the active transport of microtubules
(MTs) powered by ATP-consuming kinesin can lead to
macroscopic flows [14]. To investigate possible dissipation
scaling behavior in active transport systems, we developed
a simple 2D lattice model for a MT-kinesin mixture, which
can be extended to 3D. As shown in Fig. 3(c), the
microscopic state variables for a MT molecule are its
physical location ði; jÞ and its polarity p ¼ 1–4 [labeled by
different colors in Fig. 3(c)], which corresponds to the four
possible directions in the 2D model. At each site ði; jÞ, the
MT can change its orientation by 90° with a switching rate
ω. The transport rate of the MTat site ði; jÞ in direction p is
given by ki;j;p ¼ kd þ k̃i;j;pðni;j;pÞ, where kd is a small
passive transport rate due to thermal diffusion and k̃i;j;p is
the active transport rate that depends on ni;j;p—the number
of kinesin motors at site ði; jÞ that drive the active transport
along p direction. Without considering motor-motor inter-
action, we use the leading order linear dependence:
k̃i;j;p ¼ k0ni;j;p, where k0ð≫kdÞ is a large single-kinesin
active transport rate that increases with the ATP concen-
tration. To make our model thermodynamically consistent,
a reverse rate ki;j;−p ¼ kd þ k̃i;j;p expð−ni;j;pΔμ0Þ is
included with Δμ0 the free energy dissipation in ATP
hydrolysis. For simplicity, we assume that ni;j;p follows an
independent identically distributed Gaussian distribution
ni;j;p ∼maxð0;N ðμ; σÞÞ [31]. The coarse-graining pro-
cedure is applied for the MT-kinesin network. The first
iteration combines the four orientation states at the same
location, and the subsequent iterations merge neighboring
spatial locations. As shown in Fig. 3(d), the dissipation rate
in the coarse-grained networks follows a power-law scaling
relation with an exponent λ ≈ 1.33 after the initial coarse-
graining step. In reality, dynamics of the kinesin number
ni;j;p, which is coupled with MT dynamics, can lead to
spatial correlation in ni;j;p. However, the dissipation scaling
law remains true when spatial correlation in ni;j;p is
introduced (see Sec. III in the Supplemental Material [17]
for details).
Discussion.—The dissipation scaling in self-similar

reaction networks is reminiscent of the Kolmogorov scaling
theory in homogeneous turbulence, which is based on self-
similarity of the turbulence structures (“eddies”) at different
scales in the inertia range [32,33]. However, as illustrated in
Fig. 4, while energy is introduced at large length scale in
turbulence, free energy is injected at the microscopic
scale in reaction networks, which leads to the “inverse
cascade” of energy dissipation. Furthermore, while energy

(a)

(b)

(b)

(d)

nx

ny

x
y

20 24 28 212 216

MT polarity

+-
-+

+

-

-

+

MT polarity

CG

CG

CG

CG

102

100

10-2

10-4

20 24 28 212 216

100

10-5

FIG. 3. (a) The reaction network and the coarse-graining
scheme for the Brusselator system. The four states in the central
blue shade form the new blue state, the red links are coarse
grained into the links between the new blue state and adjacent
states. (b) The scaling of dissipation rate _Ws in Brusselator.
(c) The reaction network for the microtubule-kinesin mixture.
Each gray circle denotes a spatial location, and the four colors
denote different MT orientations. (d) The scaling of dissipation
rate _Ws in the MT-kinesin system. See the Supplemental Material
[17] for parameters used in (b) and (d).
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is conserved within the inertia range in turbulence, it is
dissipated at all scales in nonequilibrium networks. In fact,
the inverse scaling law (5) indicates that the energy
dissipation rate in a coarse-grained network (CGN) is
much lower than that in its preceding fine-grained network
(FGN). The difference in energy dissipation in CGN and
FGN is due to two “hidden” free energy costs in CGN:
(1) the energy dissipation needed to maintain the NESS of a
CG state, which contains many internal microscopic states
and transitions among them, and (2) the entropy production
due to merging multiple reaction pathways into a CG
reaction between two CG states [34,35] (See Sec. IV in the
Supplemental Material [17] for details).
The state space coarse-graining approach and the dis-

sipation scaling analysis developed here provide a general
framework to study nonequilibrium thermodynamics of
biochemical systems where dynamics may only be mea-
sured at coarse-grained (mesoscopic) scales [14,36]. In
particular, the dissipation scaling relation provides a power-
ful tool for estimating the true microscopic dissipation rate
from mesoscopic measurements. For example, in the
MT-kinesin system, ATP is hydrolyzed to drive the relative
motion of microtubules with the microscopic coherent
length given by the kinesin persistent run length
l0 ∼ 0.6–1 μm [37,38]. The active flow of the MT-kinesin
system can occur at a much larger length scale lf ∼ 100 μm
[14]. By using the dissipation scaling law [Eq. (5)], the
energy dissipation rate _Wf determined from the flow
velocity field at the length scale lf is orders of magnitude
smaller than the true energy dissipation rate _W0

at the microscopic scale l0: ð _Wf= _W0Þ ≈ ½ðl0=lfÞ3�λ3D ≈
10−7.4–10−8.2 where λ3D ¼ 1.23 for the 3D regular lattice
network is used. This means that most of the energy is spent
to generate and maintain the flow motion at different length
scales from l0 to lf, and only a tiny amount is used to
overcome viscosity at the large flow scale lf. It would be
interesting to test this large difference in energy dissipation
experimentally.
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