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I. FLUX-BASED FORMALISM OF THE ORIGINAL HOPFIELD SCHEME

This section provides the detailed derivation of the results for the original Hopfield scheme (Fig. 1A in main text),
including the flux-based formalism (Fig. 2A) and the error-cost bound. We also consider how finite γ introduces a
small increase to the minimum energy cost.

A. Deriving the normalized steady-state fluxes for the flux-based formalism

As shown in Fig. 2A in the main text, the normalized fluxes in the correct half of the network are denoted by j±1,
j±2, and β±1. The normalized fluxes in the incorrect half of the network are denoted by their primed counterparts,
which we shall derive in terms of the correct fluxes.

First, the (normalized) fluxes originating from the free enzyme E are given by

j′1 =
k1PE

JR
= j1, β′−1 =

k−3PE

JR
= β−1, (S1)

which are exactly equal to their counterparts in the correct half of the network. As mentioned in the main text, an
additional error rate η0 is defined as the ratio of the flux from EW to EW∗ to the flux from ER to ER∗:

η0 =
k2PEW

k2PER
=
k2PEW

JR

JR
k2PER

=
j′2
j2
. (S2)

Hence we have j′2 = j2η0. In addition, j′−1 can be related to j−1 through j′2:

j′−1

j′2
=
fk−1

k2
= f

j−1

j2
=⇒ j′−1 = fj−1

j′2
j2

= fη0j−1. (S3)

Following the same line of thinking, the (normalized) fluxes originating from the activated state EW∗ are given by:

j′p =
kpPEW∗

JR
=
JW
JR

= η, (S4)

j′−2 =
k−2PEW∗

JR
=
k−2

kp
j′p = j′p

k−2PER∗

kpPER∗
= ηj−2, (S5)

β′1 =
fk3PEW∗

JR
= f

k3

kp
y′p = fy′p

k3PER∗

kpPER∗
= fηβ1, (S6)

where j′p = η was the normalized flux for incorrect formation directly given in Fig. 2A. Thus, all expressions given in
the box in Fig. 2A have been derived.

B. Deriving the error-cost bound

The stationary conditions for the fluxes for states ER, EW, ER*, and EW* are:

j1 + j−2 = j−1 + j2, (S7)

j2 + β−1 = j−2 + β1 + 1, (S8)

j1 + ηj−2 = fη0j−1 + η0j2, (S9)

η0j2 + β−1 = ηj−2 + fηβ1 + η. (S10)

The stationary condition for E is guaranteed if the stationary conditions for all other states are satisfied. From
the first two equations, we eliminate j±2 and find j1 − j−1 = β1 − β−1 + 1. From the last two equations, we find
j1 − fη0j−1 = ηfβ1 − β−1 + η. Subtracting these two relations yields

(fη0 − 1)j−1 = (1− η) + (1− ηf)β1. (S11)

Since the normalized fluxes are positive by definition and the error we consider falls within the range η < f−1 < 1
(error rates larger than f−1 can be achieved without any proofreading), the right hand side (RHS) must be positive.
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Thus, the left hand side (LHS) is also positive, leading to η0 > f−1. Indeed, η0 only approaches its minimum f−1

in the limit j−1 → +∞. j1 would also diverge to infinity in this limit, which corresponds to the fast equilibrium
condition in the j±1 step.

Recall the cost (Eq. 9 in main text):

C =
(1 + ηf)β1 − 2β−1

1 + η
. (S12)

From the second and fourth stationary condition:

β1 = j2 − j−2 + β−1 − 1 =
1

fη
[η0j2 − ηj−2 + β−1 − η]⇒ j2 =

(f − 1)η(1 + j−2) + (1− ηf)β−1

ηf − η0
. (S13)

Thus, β1 can be eliminated from the expression for the cost:

C =
(1 + ηf)β1 − 2β−1

1 + η

=
(1 + η0)j2 − (1 + η)(1 + j−2)

1 + η

=
1 + η0

1 + η

(f − 1)η(1 + j−2) + (1− ηf)β−1

ηf − η0
− (1 + j−2)

=
(η0 − η)(1 + ηf)

(1 + η)(ηf − η0)
(1 + j−2) +

(1 + η0)(1− ηf)

(1 + η)(ηf − η0)
β−1,

(S14)

which only depends on η0, j−2, and β−1. Since η < f−1 < η0, the coefficients (η0−η)(1+ηf)
(1+η)(ηf−η0) and (1+η0)(1−ηf)

(1+η)(ηf−η0) are both

positive. The cost decreases monotonically with η0, j−2 and β−1. The cost is minimized in the limit:

η0 → f−1, j−2 → 0, β−1 → 0. (S15)

The minimum cost reads

Cmin =
(f−1 − η)(1 + ηf)

(1 + η)(ηf − f−1)
=

1− η2f2

(1 + η)(ηf2 − 1)
, (S16)

which gives Eq. 10 in the main text. In the optimal system, other fluxes are given by the stationary condition:

j2 =
ηf(f − 1)

ηf2 − 1
, β1 =

1− ηf
ηf2 − 1

, j±1 → +∞. (S17)

C. Effect of the thermodynamic constraint

Reaching the minimum cost derived above requires vanishing j−2 and β−1. Namely, these two reactions need to be
irreversible. However, complete irreversibility is impossible due to the thermodynamic constraint:

γ = eβ∆µfutile =
k1k2k3

k−1k−2k−3
=

j1j2β1

j−1j−2β−1
, (S18)

where ∆µfutile is the chemical potential difference for the futile cycle. For finite γ, the fluxes j−2 and β−1 are positive,
which would cause the minimum cost to increase (i.e. introduce a positive correction term). Since the bound becomes
exact at infinite γ, we shall calculate the positive correction term to the first order in the large γ limit. This is also
motivated by the fact that γ is usually sufficiently large in real biological proofreading networks due to the hydrolysis
of energy-rich molecules coupled to the futile cycle.

In the optimal network derived before, the fast equilibrium in the j±1 step leads to j1/j−1 → 1. Thus, the
thermodynamic constraint reduces to j−2β−1 = γ−1j2β1. The energy cost is

C =
(η0 − η)(1 + ηf)

(1 + η)(ηf − η0)

(
1 + j−2 +

(1− ηf)(1 + η0)

(1 + ηf)(η0 − η)
β−1

)
≥ (η0 − η)(1 + ηf)

(1 + η)(ηf − η0)

(
1 + 2

√
(1− ηf)(1 + η0)

(1 + ηf)(η0 − η)

√
j−2β−1

)
(S19)
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To obtain the first order correction, we substitute with η0 = f−1 and

j−2β−1 = γ−1j2β1 ≈ γ−1 · ηf(f − 1)

ηf2 − 1
· 1− ηf
ηf2 − 1

=
ηf(f − 1)(1− ηf)

(ηf2 − 1)
2 γ−1, (S20)

where j2 and β1 are evaluated at the infinite γ limit. The cost reads

Cmin =
1− η2f2

(1 + η)(ηf2 − 1)

(
1 + 2

√
ηf(1− ηf)(f2 − 1)

(1 + ηf)(ηf2 − 1)2
γ−1/2 +O(γ−1)

)
(S21)

Therefore, the thermodynamic constraint introduces a correction term of order O(γ−1/2), which is negligible in realistic
cases where γ ∼ e20.

II. FLUX-BASED FORMALISM OF THE n-STAGE DISSOCIATION-BASED-DISCRIMINATION
SCHEME

In this section, we establish the flux-based formalism and derive the error-cost bound for the n-stage dissociation-
based-discrimination (DBD) scheme. The reaction scheme is illustrated in Fig. 1B of the main text with discrimination
factors given in Eq. 7 and related text. The notation for the flux-based formalism is given in Fig. 2B of the main text.

A. Deriving the normalized steady-state fluxes for the wrong half of the network

First, we recall the definition of intermediate error rates ηm as the forward flux ratio going from EWm (ERm) to
EWm+1 (ERm+1):

η0 =
f2k2PEW0

k2PER0

=
j′2
j2
, ηm =

f2m+2k2m+2PEWm

k2m+2PERm

=
α′m
αm

(m = 1, 2, . . . , n). (S22)

Since the rate discrimination only appears in dissociation steps, we have f2 = f4 = · · · = f2m+2 = 1. Following the
derivation in the original Hopfield scheme, the (normalized) fluxes in the first two steps (i.e. E↔EW0↔EW1) are

j′1 = j1, j′2 = η0j2, (S23)

j′−1 = fη0j−1, j′−2 = η1j−2. (S24)

Next, we consider the fluxes associated with the m-th intermediate state ERm/EWm, which are given by

α′m = ηmαm, (S25)

α′−(m−1) =
k−2mPEWm

k2m+2PEWm

α′m =
α−(m−1)

αm
α′m = ηmα−(m−1), (S26)

β′m =
fk2m+1PEWm

k2m+2PEWm

α′m = f
βm
αm

α′m = fηmβm, (S27)

β′−m = β−m. (S28)

For the product forming steps, we have αn = 1 and α′n = ηn = η. Thus, we have derived the (normalized) fluxes
presented in Fig. 2B for the n-stage DBD scheme.

B. Deriving the error-cost bound

The cost in the n-stage DBD scheme is given by

Cn =
1

1 + η

n∑
m=1

(
βm + β′m − β−m − β′−m

)
=

1

1 + η

n∑
m=1

[(1 + ηmf)βm − 2β−m], (S29)
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where {β} are the (normalized) stationary fluxes. Due to the stationary conditions, summing up the net proofreading
fluxes is equivalent to calculating the difference of the total fluxes coming out of the E (free enzyme) state and the
total fluxes that lead to products:

Cn =
(1 + η0)j2 − (1 + η1)j−2

1 + η
− 1. (S30)

To derive the lower bound of [(1 + η0)j2 − (1 + η1)j−2], we first prove the following recursive relation:

αm >
ηm+1(f − 1)

ηm+1f − ηm
[πm+2 + α−m], (m = 1, 2, . . . , n− 1) (S31)

where πm =
∏n
k=m

ηk(f−1)
ηkf−ηk−1

and πn+1 = 1. The equality condition for Eq. S31 is α−k = 0 for k ≥ m+ 1 and β−k = 0

for k ≥ m. We will also prove the following relation for the error rates:

ηm+1f > ηm, (m = 1, 2, . . . , n− 1) (S32)

The relations Eq. S31 and Eq. S32 are derived inductively via the following steps:

• Step 1. For m = n− 1, the stationary conditions for states ERn and EWn read

αn−1 − α−(n−1) = 1 + βn − β−n, (S33)

ηn−1αn−1 − ηnα−(n−1) = ηn + ηnfβn − β−n (S34)

where ηn = η is the final error. Elimination of βn yields

(ηnf − ηn−1)αn−1 = ηn(f − 1)
(
1 + α−(n−1)

)
+ (1− ηnf)β−n. (S35)

The coefficient (1− ηnf) is positive since we are considering error η < ηeq = f−1. Therefore, RHS is positive.
On the other hand, αn−1 is positive. For LHS to also be positive, we must have

ηn−1 < ηnf, (S36)

which recovers Eq. S32 for m = n− 1. Since β−n > 0, we have

(ηnf − ηn−1)αn−1 > ηn(f − 1)
(
1 + α−(n−1)

)
⇒ αn−1 >

ηn(f − 1)

ηnf − ηn−1
(1 + α−(n−1)), (S37)

which recovers Eq. S31 for m = n− 1 (since πn+1 = 1). The equality condition is β−n = 0.

• Step 2. For any m = 1, 2, . . . , n− 2, we prove Eq. S31 and Eq. S32 given the condition that they both hold for
l = m+ 1, i.e.

ηm+2f > ηm+1, αm+1 ≥
ηm+2(f − 1)

ηm+2f − ηm+1

[
πm+3 + α−(m+1)

]
, where πm+3 =

n∏
k=m+3

ηk(f − 1)

ηkf − ηk−1
. (S38)

Consider the stationary conditions for states ERm+1 and EWm+1

αm − α−m = αm+1 − α−(m+1) + βm+1 − β−(m+1), (S39)

ηmαm − ηm+1α−m = ηm+1αm+1 − ηm+2α−(m+1) + ηm+1fβm+1 − β−(m+1). (S40)

Eliminating βm+1, we have

(ηm+1f − ηm)αm = ηm+1(f − 1)(α−m + αm+1) + (ηm+2 − ηm+1f)α−(m+1) + (1− ηm+1f)β−(m+1). (S41)

Since β−(m+1) > 0 and 1− ηm+1f > 0, we obtain the lower bound:

(ηm+1f − ηm)αm > ηm+1(f − 1)(α−m + αm+1) + (ηm+2 − ηm+1f)α−(m+1). (S42)
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Plugging in the lower bound for αm+1 given in Eq. S38:

(ηm+1f − ηm)αm > ηm+1(f − 1)

(
α−m +

ηm+2(f − 1)

ηm+2f − ηm+1

[
πm+3 + α−(m+1)

])
+ (ηm+2 − ηm+1f)α−(m+1)

= ηm+1(f − 1)

(
α−m + πm+2 +

ηm+2(f − 1)

ηm+2f − ηm+1
α−(m+1)

)
+ (ηm+2 − ηm+1f)α−(m+1)

= ηm+1(f − 1)(α−m + πm+2) +
(ηm+1 − ηm+2)

2
f

ηm+2f − ηm+1
α−(m+1)

> ηm+1(f − 1)(α−m + πm+2).
(S43)

Since RHS is positive, LHS must also be positive. Thus we have

ηm+1f > ηm. (S44)

We can divide both sides by (ηm+1f − ηm) which has been shown to be positive. This leads to

αm >
ηm+1(f − 1)

ηm+1f − ηm
(α−m + πm+2). (S45)

As a result of the mathematical induction, Eq. S31 and Eq. S32 holds for m = 1, 2, · · · , n−1. Specifically, the relation
for m = 1 is

η1 < fn−1ηn, α1 >
η2(f − 1)

η2f − η1
[π3 + α−1]. (S46)

We repeat the same derivation for states EW0 and ER0. The only difference from repeating the above derivation for
m = 0 is the notation: α±0 is now replaced by j±2. This gives us

η0 < fη1 < fnη, j2 >
η1(f − 1)

η1f − η0
[π2 + j−2]. (S47)

The total cost is

Cn =
(1 + η0)j2 − (1 + η1)j−2

1 + η
− 1

>
1 + η0

1 + η
π1 +

1

1 + η

(
η1(f − 1)(1 + η0)

η1f − η0
− (1 + η1)

)
j−2 − 1

=
1 + η0

1 + η
π1 +

(η0 − η1)(1 + η1f)

(1 + η)(η1f − η0)
j−2 − 1.

(S48)

The coefficient (η0−η1)(1+η1f)
(1+η)(η1f−η0) is positive since f−1η0 < η1 < η0. We also recall that error before proofreading

η0 > ηeq = f−1, with the lower bound reached in the limit of fast equilibrium. Therefore, the minimum cost for the
n-stage DBD scheme for given intermediate error rates {ηm} is

Cn > C̄n =
1 + ηeq

1 + η
π1 − 1 =

(
1 + f−1

)
(f − 1)n

1 + η

n∏
m=1

ηm
ηmf − ηm−1

− 1. (S49)

The minimum cost C̄n is reached in the limit

α−m → 0, β−m → 0, (m = 1, 2, . . . n); j−2 → 0; η0 → ηeq = f−1. (S50)

The last condition implies j1/j−1 → 1 and j±1 → +∞. These were results reported in Eq. 12 of the main text.
Next, the minimum cost C̄n can be further optimized with respective to the intermediate error rates {ηm}. In the

main text, a symmetry argument is used to illustrate that {ηm} must form a geometric series for the dissipation to be
optimized. Here, we provide the mathematical proof that it is indeed the unique minimum of the energy cost. From
Eq. S49, we define

C̃n = ln

[
1 + η

(1 + f−1)(f − 1)n
(
C̄n + 1

)]
= ln

[
n∏

m=1

ηm
ηmf − ηm−1

]
=

n∑
m=1

(ln ηm − ln (ηmf − ηm−1)). (S51)
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For any fixed error rate η, C̃n is apparently a monotonically increasing function of C̄n. Hence, finding the minimum
energy cost is equivalent to minimizing C̃n with respect to variables ηm (m = 1, 2, . . . , n−1), which is done by simply
taking the derivative:

∂C̃n
∂ηm

=
1

ηm
− f

ηmf − ηm−1
+

1

ηm+1f − ηm
=

f
(
η2
m − ηm+1ηm−1

)
ηm(ηm+1f − ηm)(ηmf − ηm−1)

. (S52)

Setting the first derivative to zero, we get η2
m = ηm+1ηm−1, i.e. the intermediate error rates indeed form a geometric

series. With the first term η0 = f−1 and the last term ηn = η, all the other error rates can be determined as

ηm = f−1(ηf)
m/n

. (S53)

It can be verified that the optimal error rates satisfy ηm ∈
(
f−1ηm−1, ηm−1

)
, which is consistent with Eq. S32. To

verify that this solution indeed correspond to a minimum of the cost, we calculate the second derivative:

∂2C̃n
∂η2

m

∣∣∣∣∣
ηm=f−1(ηf)m/n

=

(
− 1

η2
m

+
f2

(ηmf − ηm−1)
2 +

1

(ηm+1f − ηm)
2

)∣∣∣∣∣
ηm=f−1(ηf)m/n

= η−2
m ·

−1 +
1(

1− ηm−1

ηmf

)2 +
1(

ηm+1f
ηm

− 1
)2


∣∣∣∣∣∣∣
ηm=f−1(ηf)m/n

=
[
f−1(ηf)

m/n
]−2

·

−1 +
1(

1− f−1(ηf)
−1/n

)2 +
1(

f(ηf)
1/n − 1

)2


= f2(ηf)

−2m/n 2f(ηf)
1/n(

f(ηf)
1/n − 1

)2 > 0.

(S54)

Thus, the solution found above is a minimum of the energy cost. Moreover, it is a global minimum. The minimum
cost is given by

Cn,min = C̄n
∣∣
ηm=f−1(ηf)m/n =

(
1 + f−1

)
(f − 1)n

1 + η

n∏
m=1

f−1(ηf)m/n

(ηf)m/n − f−1(ηf)(m−1)/n
− 1

=
(1 + f)(f − 1)nη

(1 + η)
(
f(ηf)1/n − 1

)n − 1.

(S55)

This is the minimum energy cost reported in Eq. 13 in main text.

C. Analysing the minimum cost

The minimum cost (Eq. S55) vanishes in the limit η → ηeq = f−1 but diverges in the limit η → ηmin = f−(n+1).
Here, we analyse how the minimum cost depends on the discrimination factor f .

Cn,min =
(f − 1)n(f + 1)η[

f1+ 1
n η

1
n − 1

]n
(1 + η)

− 1 =

(
1− f−1

)n(
1 + f−1

)[
1− (fn+1η)

−1/n
]n

(1 + η)
− 1

=

(
1− f−1

)n(
1 + f−1

)
−
[
1−

(
fn+1η

)−1/n
]n

(1 + η)[
1− (fn+1η)

−1/n
]n

(1 + η)

=

[
1− (n− 1)f−1 +O

(
f−2

)]
−
[
1 + η − n

(
fn+1η

)−1/n
+O

[(
η1/nf (n+1)/n

)−2
]]

[
1− (fn+1η)

−1/n
]n

(1 + η)

=
n
(
fn+1η

)−1/n − (n− 1)f−1 + h.o.t.[
1− (fn+1η)

−1/n
]n

(1 + η)
.

(S56)
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In the intermediate error range f−(n+1) � η � f−1, the numerator is dominated by the first term which is proportional
to f−(n+1)/n, and the denominator is approximately 1. Therefore, the minimum cost decreases with f following a
power law:

Cmin ∝ f−
n+1
n ,

(
η−1 � f � η−1/(n+1)

)
. (S57)

The power-law exponent n+1
n is verified in Fig. 3A (main text) for n = 3. More importantly, the power law relation

between the minimum cost and the discrimination factor indicates that increasing f leads to a non-diminishing benefit
in cost reduction (see main text for detailed discussion).

D. Partition between proofreading and catalytic fluxes

The derivation of the minimum energy cost in the above section suggests that in the energetically optimal system,
the normalized fluxes in the right half of the network are given by

αm = πm+1, βm = αm−1 − αm =
ηm−1 − ηm
ηmf − ηm−1

πm+1, (S58)

where πm =
∏n
k=m

ηk(f−1)
ηkf−ηk−1

. On the other hand, these fluxes are related to the steady-state probability PERm ,

reaction rates k2m+1, k2m+2, and the correct product formation flux JR by

αm =
k2m+2PERm

JR
, βm =

k2m+1PERm

JR
. (S59)

The ratio of these two fluxes is

βm
αm

=
k2m+1

k2m+2
=

ηm−1 − ηm
ηmf − ηm−1

=
1− (ηf)1/n

f(ηf)1/n − 1
, (S60)

which has taken into account the optimal error rates ηm = f−1(ηf)
m/n

. This is the partition ratio given in Eq. 14 in
the main text. The reaction rates k2m+1, k2m+2 can be expressed in terms of the energy levels of the discrete states
and the energy barriers:

k2m+1 = k0
2m+1 exp

(
εm − ε†m,p

)
, k2m+2 = k0

2m+2 exp
(
εm − ε†m,m+1

)
. (S61)

k0
2m+1 and k0

2m+2 are prefactors independent of the energy levels. εm is the energy level of ERm. ε†m,p and ε†m,m+1

is the energy level of the transition state (energy barrier) between ERm and ERm+1. Therefore, the ratio βm/αm is
actually only related to the difference between the energy level of the two transition states:

βm
αm

=
k2m+1

k2m+2
=

1− (ηf)1/n

f(ηf)1/n − 1
∝ exp

(
ε†m,m+1 − ε†m,p

)
. (S62)

As discussed in the main text, this is a manifestation of how the error-cost relation is kinetically controlled.

E. Effect of the thermodynamic constraints

Similar to the case of the original Hopfield scheme, the thermodynamic constraints prevent any reaction to be
completely irreversible and introduces a correction term to the minimum energy cost (Eq. S55) in the n-stage DBD
scheme. Here we calculate the leading order contribution of this correction term.

In the derivation of the error-cost bound, many of the fluxes were set to zero since they only increase the overall
cost. These terms must be recovered as we study the effect of the thermodynamic constraints. Fortunately, due to
the linearity of the stationary conditions, they contribute to the cost through a linear relation:

C = C(j−2, {α}, {β}) = C0 + a0j−2 +

n−1∑
m=1

amα−m +

n∑
m=1

bmβ−m, (S63)
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where C0 is the minimum cost in Eq. S55. The coefficients ai (i = 0, 1, 2, . . . , n − 1) and bi (i = 1, 2, 3, . . . , n) are
positive functions of f and ηm (m = 1, 2, . . . , n). Following the inductive method used to derive the bound, we find
the following coefficients:

a0 =
(η0 − η1)(1 + η1f)

(1 + η)(η1f − η0)
(S64)

ai =
1 + η0

1 + η

π1

πi+2

f(ηi − ηi+1)
2

ηiηi+1(f − 1)2
, i = 1, 2, . . . , n− 1 (S65)

bi =
1 + η0

1 + η

π1

πi+1

1− fηi
ηi(f − 1)

, i = 1, 2, . . . , n, (S66)

where η0 = f−1, πm =
∏n
k=m

ηk(f−1)
ηkf−ηk−1

, and πn+1 = 1.

The thermodynamic constraints are:

γ =
j2
j−2
· β1

β−1
=

j2
j−2
· α1β2

α−1β−2
= · · · = j2

j−2
·
m−1∏
k=1

αk
α−k

βm
β−m

, (m = 1, 2, . . . n) (S67)

For any futile cycle, the thermodynamic correction to the energy cost is of the order γ−1/L, where L is the number of
reactions needed to be driven strongly forward in this cycle. This is because the cost always depends on the reverse
reaction fluxes, which should vanish without the thermodynamic constraint, in a linear fashion. Thus, in the presence
of the thermodynamic constraint, the cost is minimized when those reverse fluxes are of the same order of magnitude,
i.e. of order γ−1/L. Hence, the first order contribution in γ comes from the largest futile cycle, which has (n + 1)
reaction steps that need to be driven forward. The thermodynamic constraint for this cycle can be reorganized to:

j−2β−n

n−1∏
m=1

α−m =
j2βn
γ

n−1∏
m=1

αm. (S68)

Therefore, the first correction to the cost is calculated as follows:

C = C0 +

(
a0j−2 +

n−1∑
m=1

amα−m + bnβ−n

)
+

n−1∑
m=1

bmβ−m

≥ C0 + (n+ 1)

(
a0j−2 ·

n−1∏
m=1

amα−m · bnβ−n

)1/(n+1)

+

n−1∑
m=1

bmβ−m

= C0 + (n+ 1)

(
a0j2 · bnβn

n−1∏
m=1

amαm

)1/(n+1)

γ−1/(n+1) +O(γ−2/(n+1))

= C0 + C1γ
−1/(n+1) +O(γ−1/n).

(S69)

The O(γ−1/n) term is due to the second largest futile cycle which has length n. The coefficient C1 is given by

C1 = (n+ 1)

(
a0j2 ·

n−1∏
m=1

amαm · bnβn

)1/(n+1)

, (S70)

where the coefficients (a0, am, bn) and fluxes (j2, αm, βn) are evaluated in the optimal scheme, i.e. as if the
thermodynamic constraints are not present. Thus, the correction is of the order γ−1/(n+1). Although the correction
term becomes increasingly significant as n is increased, the number of proofreading pathways in real biological systems
is usually limited, so the correction term remains small. Moreover, note that the correction term due to thermodynamic
constraints is always positive, so the original error-cost bound could never be violated.

III. A SIMPLE KINETIC MODEL FOR n-STAGE PROOFREADING

In this section, we study the n-stage proofreading scheme shown in Fig. 4A by directly solving the Chemical Master
Equation (CME). We introduce Pm(t) to denote the probability for state ERm at time t and P−m(t) to denote the
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probability for state EWm. The probability for the free enzyme state E is denoted by P0(t). The probabilities are
normalized by the condition

n∑
m=−n

Pm(t) = 1, ∀t ∈ (−∞,+∞). (S71)

The CME reads

dP0(t)

dt
= (1 + a)κnPn(t) + (1 + fa)κnP−n(t) + fa

n−1∑
m=1

κmP−m(t) + a

n−1∑
m=1

κmPm(t)−
(
1 + f−1

)
κ0P0(t), (S72)

dPm(t)

dt
= κm−1Pm−1(t)− (1 + a)κmPm(t), m = 1, 2, . . . n (S73)

dP−1(t)

dt
= f−1κ0P0(t)− (1 + fa)κ1P−1(t), (S74)

dP−m(t)

dt
= κm−1P−(m−1)(t)− (1 + fa)κmP−m(t), m = 2, 3, . . . n. (S75)

We are interested in the steady-state solution, which satisfies dPm

dt = 0 (m = −n,−(n−1), . . . , n−1, n). The stationary
condition for state m (m = 1, 2, 3, . . . , n) leads to:

dPm(t)

dt
= κm−1Pm−1(t)− (1 + a)κmPm(t) = 0⇒ Pm =

1

(1 + a)m
κ0

κm
P0. (S76)

Similarly, the stationary condition for state (−m) leads to

P−m =
1

f(1 + fa)m
κ0

κm
P0. (S77)

The error rate η is given by

η =
JW
JR

=
P−n
Pn

= f−1

(
1 + a

1 + fa

)n
. (S78)

Note that the error η is always bound between ηmin = f−n−1 (in the limit a→∞) and ηeq = f−1 (in the limit a→ 0).
From this relation, we can solve for a as a function of η:

a =
1− (ηf)

1/n

f(ηf)
1/n − 1

. (S79)

On the other hand, the energy cost C is given by

C =
1

JR + JW

(
a

n∑
m=1

κmPm + fa

n∑
m=1

κmP−m

)

=
a

(1 + η)κnPn

n∑
m=1

κm(Pm + fP−m)

=
a(1 + a)n

(1 + η)κ0P0

n∑
m=1

κ0P0

(
1

(1 + a)m
+

1

(1 + fa)m

)
=
a(1 + a)n

1 + η

[
1− (1 + a)−n

a
+

1− (1 + fa)−n

fa

]
=

(1 + a)n
(
1 + f−1

)
1 + η

− 1.

(S80)

Substituting a with a = 1−(ηf)1/n

f(ηf)1/n−1
, we obtain the full expression for the minimum cost

C = (1 + f)

(
f − 1

f(ηf)
1/n − 1

)n
η

1 + η
− 1 =

(1 + f)(f − 1)
n(

f(ηf)
1/n − 1

)n η

1 + η
− 1 (S81)
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which is exactly the dissipation bound for n-stage DBD scheme reported in the main text (Eq. 13).
In this simplified model, both error and energy dissipation are modulated by the partition ratio a, which is equivalent

to the flux-splitting ratio βm/αm in the flux-based formalism calculated above. When a→ 0, the system approaches
the non-dissipative, equilibrium discrimination regime with η → ηeq = f−1 and C → 0. When a → ∞, the system
approaches the limit to which error can be reduced by dissipative proofreading, namely η → ηmin = f−n−1 and
C →∞. Moreover, the system is optimized as long as the partition ratio a is uniform for all proofreading pathways.
The continuous tuning of a ∈ (0,∞) therefore represents a trade-off between error and dissipation, where error can
be reduced by increasing a at the cost of more dissipation.

IV. MICHAELIS-MENTEN SCHEME WITH DISSIPATIVE RESETTING

This section provides detailed derivation of the error-cost relation in the MM-with-proofreading scheme reported in
Fig. 5 in the main text. More complex reaction networks can be considered as combination or generalization of this
type of reaction network.

The reaction scheme is presented in Fig. S1A with notations introduced in the main text. Due to the kinetic control
of both error and energy cost, we introduce a set of variables ξi to quantify the difference between energy barriers:

ξ1 = f1, ξ2 =
f1f2

f−1
= f−2, ξp =

f1fp
f−1

=
f−2fp
f2

. (S82)

Their relation with energy barrier differences are reported in Eq. 17 in the main text.
In the absence of proofreading (k±2 = 0), the minimum error is determined by the maximum difference in energy

barriers

ηeq = min (ξ1, ξp) = f1 min

(
1,

fp
f−1

)
. (S83)

The minimum error is achieved by making the step with the largest barrier difference rate-limiting. Namely, kp is
rate-limiting if fp < f−1, and k1 is rate-limiting if fp > f−1.

We study the relation between error and energy cost in the parameter regime where the dissipative proofreading
mechanism is relevant, i.e. it could achieve some error rate η < ηeq which is otherwise inaccessible. The condition for
the proofreading mechanism to reduce error below ηeq is

f2 > max (f−1, fp). (S84)

In the main text, this condition is justified with the heuristic argument that proofreading only improves the accuracy
if it creates more bias in the dissociation of incorrect complexes compared to the bias in non-dissipative dissociation
(unbinding) or product formation. In the following, this condition is justified a posteriori after the minimum error is
derived.

In Fig. S1B, we present the flux-based formalism for the MM-with-proofreading scheme, where the noncognate
fluxes (i.e. j′±1,±2) has already been derived and labeled on the reactions. η stands for the error. The fluxes are
constrained by the stationary conditions for ER and EW:

j1 − j−1 = 1 + j2 − j−2, f1j1 − η
f−1

fp
j−1 = η + η

f2

fp
j2 − f−2j−2. (S85)

The energy cost C is given by

C =
1

1 + η

(
j2 − j−2 + η

f2

fp
j2 − f−2j−2

)
=

1

1 + η

[
(1 + f1)j1 −

(
1 + η

f−1

fp

)
j−1

]
− 1. (S86)

Eliminating j2 from the stationary conditions yields:(
η
f2

fp
− f1

)
j1 = η

f2 − f−1

fp
j−1 + η

f2 − fp
fp

+ f2

(
f1

f−1
− 1

fp
η

)
j−2, (S87)

where f−2 has been substituted by f1f2
f−1

due to thermodynamic constraints. We note that the right hand side is

positive due to conditions f2 > max (f−1, fp) and η < ηeq ≤ f1fp
f−1

. Thus, the left hand side must also be positive,

leading to the minimum error

η > ηmin =
f1fp
f2

. (S88)
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The condition for the minimum error in the presence of proofreading to be smaller than the minimum error without
proofreading is

ηmin < ηeq ⇔
f1fp
f2

< f1min

(
1,

fp
f−1

)
⇔ f2 >

fp

min
(

1,
fp
f−1

) = max(fp, f−1), (S89)

which recovers the condition Eq. S84. This is the condition for the nonequilibrium proofreading mechanism to be
relevant. It can be verified that if f2 is smaller than either f−1 or fp, the minimum error can always be achieved
without proofreading.

Finally, we consider the energy cost for η ∈ (ηmin, ηeq):

C =
1

1 + η

[
(1 + f1)j1 −

(
1 + η

f−1

fp

)
j−1

]
− 1

=
1

1 + η

(1 + f1)
η f2−f−1

fp
j−1 + η

f2−fp
fp

+ f2

(
f1
f−1
− 1

fp
η
)
j−2

η f2fp − f1

−
(

1 + η
f−1

fp

)
j−1

− 1

= C0 + a1j−1 + a2j−2.

(S90)

The coefficients are given by

C0 =
(f1 − η)

(
1 + η f2fp

)
(1 + η)(η f2fp − f1)

, (S91)

a1 =

(
f1 − η f−1

fp

)(
1 + η f2fp

)
(1 + η)

(
η f2fp − f1

) , (S92)

a2 =
(1 + f1)f2

(
f1
f−1
− η

fp

)
(1 + η)

(
η f2fp − f1

) . (S93)

(S94)

Since a1,2 > 0, the energy cost is minimized when the reverse fluxes j−1,−2 → 0. The minimum energy cost is given
by

Cmin = C0 =
(f1 − η)

(
1 + η f2fp

)
(1 + η)(η f2fp − f1)

, (S95)

which recovered Eq. 16 of the main text.
The effect of the thermodynamic constraint γ = k1k2

k−1k−2
can be analysed following the method used in the original

Hopfield scheme (section I C). The correction is of the order γ−1/2 due to having two reactions driven irreversibly
forward in the futile cycle.

V. PARAMETERS AND ADDITIONAL SIMULATION RESULTS FOR THE REAL BIOLOGICAL
SYSTEMS

In this section, we provide additional details for the three biological examples analysed in the main text (Fig. 6).

A. T7 DNA polymerase

The reaction network and parameters for the DNA replication network are obtained from previous works [1, 2]. For
reference purposes, the reaction network has been reproduced in Fig. S1C.
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FIG. S1. Reaction schemes used in the main text and SI. (A) Michaelis-Menten scheme with dissipative resetting (reproduced
from Fig. 5A in main text for comparison with the flux-based formalism). (B) Flux-based formalism for the MM-with-
proofreading scheme. (C) Reaction scheme for T7 DNA polymerase, reproduced from ref. [1, 2]. (D) Reaction scheme for E.
coli ribosome, reproduced from ref. [1, 2].

a. Relation between various error rates. We first verify that the native system operates in the regime where
dissipative proofreading is necessary. The error of the native system is ηwt = 7.39 × 10−8; the minimum error for
discrimination without proofreading is ηeq = min (ξ1, ξp) = ξ1 = 8.00× 10−6; the minimum error for the first step is

η0 = ξ1 = f1 = 8.00×10−6; the overall minimum error is ηmin =
fp
f2
f1 = 3.34×10−11. Therefore, the relation between

these error rates is

η0 = ηeq > ηwt > ηmin. (S96)

The native system ηwt falls within the non-equilibrium discrimination regime.
b. Optimal and native proofreading systems The only difference between the DNA replication network and the

MM-with-proofreading scheme is the addition of intermediate states EW* and ER*. The additional states will not
change the error-cost bound since proofreading reaction is driven irreversibly forward in the optimal scheme, as
indicated by the derivation in the last section. Hence, the error-cost bound is the same as that derived in the
MM-with-proofreading scheme:

Cmin =
(f1 − η)

(
1 + η f2fp

)
(1 + η)(η f2fp − f1)

, (S97)

which is the red line in Fig. 6A of the main text. This bound indeed encapsulates all the systems sampled.
At the native error rate, the optimal partition ratio is given by:

aoptimal = (j2)optimal =
f1 − ηwt

ηwt
f2
fp
− f1

= 4.5× 10−4. (S98)

The native partition ratio is

awt =
k2

kp
= 8.0× 10−4. (S99)

B. E. coli ribosome

The reaction network and parameters for the protein replication network are also obtained from previous works [1, 2].
For reference purposes, the reaction network has been reproduced in Fig. S1D.
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FIG. S2. The error-dissipation relations in two mutants of the E. coli ribosome. Left: mutant rpsL141, which is hyperaccurate
(HYP). Right: mutant rpsD12, which is more error-prone than WT (ERR).

a. Relation between various error rates. The error of the native system is ηwt = 8.65× 10−4; the minimum error
for discrimination without proofreading is ηeq = min (ξ1, ξ2, ξp) = ξp = 1.45 × 10−6; the minimum error for the first

two steps is η0 = min(ξ1, ξ2) = ξ2 = 3.45× 10−4; the overall minimum error is ηmin =
fp
f3
η0 = 1.83× 10−7. Therefore,

the relation between these error rates is

ηwt > η0 > ηeq > ηmin. (S100)

The native error rate ηwt falls within the equilibrium discrimination regime, which can in principle be achieved
without the proofreading step. As discussed in the main text, achieving ηeq requires the product formation step
kp to be much smaller than the preceding reactions k±1,±2, which could not be realized due to speed requirements.
Similarly, achieving η0 without proofreading requires GTP hydrolysis (k2) to be rate-limiting, which is also prevented
by speed requirements.

b. Energy-cost bound in the translation network. The network has only one proofreading pathway, and the error-
cost bound takes the same form as the bound in the MM-with-proofreading scheme (Eq. S95) with f1 replaced by η0

(the minimum error in the first two steps) and f2 replaced by f3 (the discrimination factor for the proofreading step).
Therefore, the error-cost bound in the ribosome network is

Cmin =
(η0 − η)

(
1 + η f3fp

)
(1 + η)

(
η f3fp − η0

) =

(
f1f2
f−1
− η
)(

1 + η f3fp

)
(1 + η)

(
η f3fp −

f1f2
f−1

) . (S101)

This bound correspond to the red line in Fig. 6B in main text.
c. Results in mutants. The simulation results for the ERR (error-prone) and HYP (hyperaccurate) mutants are

qualitatively similar to the results in WT. The parameters for these two mutants are obtained from ref. [1]. The
numeric results are presented in Fig. S2.

C. E. coli isoleucyl-tRNA synthetase (IleRS)

The reaction network and parameters for the IleRS network are obtained from ref. [3]. The reaction network is
presented in Fig. S3. The error and cost of the IleRS network are bounded by the following piecewise function:

Cmin =


1+η0
1+η

(b1−1)(b2−1)(b3−1)η(
(b1b2b3η)1/3−η1/30

)3 − 1 η0
b1b2b3

< η <
η0b

2
1

b2b3

1+η0
1+η

(b2−1)(b3−1)η

((b2b3η)1/2−η01/2)
2 − 1

η0b
2
1

b2b3
< η < η0b2

b3

1+η0
1+η

(b3−1)η
b3η−η0 − 1 η0b2

b3
< η < η0

(S102)

where b1 = fh1

f3
, b2 = fh2

f4
, and b3 = fh3

fp
. η0 = min

(
f+,

f+
f−
fa

)
is the minimum error of the equilibrium discrimination

by the first two steps (binding and activation). Eq. S102 corresponds to the red line in Fig. 6C in the main text. The
three error intervals correspond to the three phases of proofreading in Fig. 6D in the main text. In this section, we
provide detailed derivation for the error-cost bound and the optimal partition ratios.
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FIG. S3. Reaction scheme for E. coli tRNAIle aminoacylation, reproduced from ref. [3].

a. Derivation of the error-cost bound. Here, we show that due to the different discrimination factors in the three
proofreading pathways, the optimal partition ratios are no longer uniform, and there will be three proofreading regimes
due to the sequential “shutdown” of proofreading pathways.

First, we investigate the case where all three proofreading pathways are utilized, which can be considered as three
MM-with-proofreading schemes applied in tandem. The minimum cost in the MM-with-proofreading scheme (Eq. S95)
gives the ratio of the total input flux (product formation plus proofreading) to the output (product-forming) flux:

Jin

Jout
=
Jhydrolysis

Jproduct
= 1 + C = 1 +

(f1 − η)
(

1 + η f2fp

)
(1 + η)

(
η f2fp − f1

) = 1 +
(η0 − η)(1 + ηb)

(1 + η)(ηb− η0)
=
η(η0 + 1)(b− 1)

(1 + η)(ηb− η0)
, (S103)

where b = f2
fp

is the discrimination of the partition ratio, and η0 = f1 can be considered as the error of the last

proofreading stage. The optimal partition ratio corresponding to this minimum cost is

a = j2 =
η0 − η
ηb− η0

. (S104)

The minimum proofreading cost can thus be calculated by taking the product of the ratios Jin/Jout in all three
proofreading pathways, assuming optimal partition ratios. We denote the error at the three proofreading stages as

η1,2,3, respective. η3 = η is the final error rate. η0 = min
(
f+,

f+
f−
fa

)
is the minimum error before proofreading. The

minimum cost is therefore

C =
Jin

Jout
− 1 (S105)

=
η1(η0 + 1)(b1 − 1)

(1 + η1)(η1b1 − η0)

η2(η1 + 1)(b2 − 1)

(1 + η2)(η2b2 − η1)

η3(η2 + 1)(b3 − 1)

(1 + η3)(η3b3 − η2)
− 1 (S106)

=
η1η2η3(1 + η0)(b1 − 1)(b2 − 1)(b3 − 1)

(1 + η3)(η1b1 − η0)(η2b2 − η1)(η3b3 − η2)
− 1 (S107)

=
1 + η0

1 + η

(
1− b−1

1

)(
1− b−1

2

)(
1− b−1

3

)(
1− η0

η1b1

)(
1− η1

η2b2

)(
1− η2

η3b3

) − 1 (S108)

The denominator can be maximized with Jensen’s inequality. Since f(x) = ln(1− ex) (x ∈ (0, 1)) is a concave function
(f ′′(x) < 0), we have

f

(
ln

η0

η1b1

)
+ f

(
ln

η1

η2b2

)
+ f

(
ln

η2

η3b3

)
≤ 3f

(
1

3
ln

η0

b1b2b3η3

)
(S109)

⇒
(

1− η0

η1b1

)(
1− η1

η2b2

)(
1− η2

η3b3

)
≤

[
1−

(
η0

b1b2b3η3

)1/3
]3

. (S110)

Hence, we obtain the minimum cost in this regime:

Cmin =
1 + η0

1 + η

(
1− b−1

1

)(
1− b−1

2

)(
1− b−1

3

)[
1−

(
η0

b1b2b3η3

)1/3
]3 − 1 =

1 + η0

1 + η

(b1 − 1)(b2 − 1)(b3 − 1)η(
(b1b2b3η)

1/3 − η1/3
0

)3 − 1, (S111)
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where η3 = η. The condition for minimizing the cost is

η0

η1b1
=

η1

η2b2
=

η2

ηb3
=

(
η0

b1b2b3η

)1/3

(S112)

⇒η1 = η
2/3
0 η1/3

(
b2b3
b21

)1/3

, η2 = η
1/3
0 η2/3

(
b23
b1b2

)1/3

. (S113)

Note that the error rates no longer form a geometric series. Instead, their ratios are modulated by factors b1,2,3. The
optimal partition ratios are:

a1 =
η0 − η1

η1b1 − η0
, a2 =

η1 − η2

η2b2 − η1
, a3 =

η2 − η
ηb3 − η2

. (S114)

where η1,2 take the optimal values indicated in Eq. S113. All three partition ratios decrease as the error η is increased.
In the n-stage DBD scheme, the partition ratios are equal, and they go to zero simultaneously at ηeq = f−1. For the
IleRS network, however, the three partition ratios are not equal, and one of them vanishes first. This takes place in
the proofreading pathway with the least b, which is b1 in the IleRS network:

a1 = 0⇔ η0 = η1 ⇔ η = ηth1 = η0
b21
b2b3

. (S115)

For error rates greater than the threshold ηth1, the above calculation leads to a negative partition ratio (a1 < 0),
which must be regularized to zero.

Hence, the three-stage proofreading analysis only applies to η ∈
(

η0
b1b2b3

,
η0b

2
1

b2b3

)
. For larger error, the first proofread-

ing pathway does not function (a1 = 0), and we treat the system as two MM-with-proofreading schemes operating in
tandem. Similarly, an error-cost bound can be obtained:

Cmin =
1 + η0

1 + η

(b2 − 1)(b3 − 1)η(
(b2b3η)

1/2 − η0
1/2
)2 − 1,

η0b
2
1

b2b3
< η <

η0b2
b3

. (S116)

The maximum error for this two-pathway regime is determined by a2 = 0, which leads to η = ηth2 = η0b2
b3

. For error
larger than this value, we have a1 = a2 = 0, and the optimal system operates as if there is only one proofreading
pathway:

Cmin =
1 + η0

1 + η

(b3 − 1)η

b3η − η0
− 1,

η0b2
b3

< η < η0. (S117)

Therefore, we have derived the piecewise error-cost bound for the IleRS network, which is in agreement with the
numeric sampling (Fig. 6C, main text).

b. Analysis of the native system. In the IleRS network, the error rate thresholds which separate the three proof-
reading regimes are

η0 = 9.2× 10−3, ηth2 = η0
b2
b3

= 1.3× 10−4, ηth1 = η0
b21
b2b3

= 7.7× 10−5, ηmin =
η0

b1b2b3
= 4.5× 10−8. (S118)

The native system operates in the one-stage proofreading phase, where the optimal system only utilizes the last
(post-transfer) proofreading pathway:

ηwt = 2.2× 10−4 ∈ (ηth2, η0). (S119)

The native partition ratios are

a1 =
fh1

f3
= 3.4× 10−6, a2 =

fh2

f4
= 3.6× 10−3, a3 =

fh3

fp
= 8.9× 10−2. (S120)

The optimal partition ratios are

a1 = a2 = 0, a3 =
η0 − ηwt

ηwtb3 − η0
= 3.9× 10−2. (S121)
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FIG. S4. Schematics of the detailed ribosome model [4].

Hence, it would seem that the first two proofreading pathways are not utilized, consistent with the theory prediction
(a1 = a2 = 0). The last proofreading pathway is responsible for most of the proofreading, but the third-stage
partition ratio in the native system (8.9 × 10−2) is more than twice of its optimal value (3.9 × 10−2). The reason
for the extra proofreading is that η0, which is the minimum error before proofreading, is never realized in the real
system. It is only achieved if the amino acid activation step ka is much slower than binding k±, but such time scale
separation is not realized in the native system. The error rate before proofreading, which in theory could be as low

as η0 = fa
f+
f−

= 9.2 × 10−3, is actually ηactivation = 2.1 × 10−2 in the native system (calculated by taking the ratio

of net fluxes in the activation step). If we calculate the partition ratio with η0 replaced by ηactivation, the optimal
partition ratio becomes a′3 = 9.3 × 10−2, which is indeed closer to the native system. The reason why η0 could not
be realized is similar to what was discussed in the main text about the ribosome network. η0 could be approached
by either speeding up binding/unbinding reactions or by slowing down the amino acid activation step. Reducing the
activation rate, however, will slow down the speed of product formation. One possible interpretation is that while the
binding and unbinding reactions are already as fast as possible, the native system chooses not to further decrease the
activation rate so as to produce isoleucyl-tRNAIle sufficiently fast, which necessitates additional proofreading in the
post-transfer proofreading pathway.

Hence, the main conclusion here is that the deviation of the native IleRS from the optimal error-cost bound is due
to prioritizing speed in the activation step. This is consistent with the trade-off analysis in the previous work [3],
where ka prefers to optimize speed rather than error or dissipation. If ka (and the reverse reaction k−a) becomes
much slower than the binding and unbinding rates k±, the accuracy before proofreading will be improved, which will
lead to a smaller partition ratio a3 and lower cost C.

D. Detailed model of the ribosome

The ribosome model presented in the main text was based on previous theoretical work [1] and experimental
work [5]. Here, we apply our theoretical framework to study another model of the ribosome, which is based ref. [4].
The reaction scheme is shown in Fig. S4. Compared to the ribosome model discussed in the main text, this model
now includes multiple intermediate states. However, there is still only one proofreading pathway, namely the futile
cycle containing k7. For the sake of generality, we allow for discrimination in all reaction steps, subject to the
thermodynamic constraint:

f1freadf2f3fGTPf4f7

f−1f−readf−2f−3f−GTPf−4f−7
= 1. (S122)

In the following, we derive the error-cost bound with the flux-based formalism detailed above.
For step i, the rate constant is denoted by ki in the cognate network and k′i = kifi in the noncognate network.

The normalized flux is denoted by ji in the cognate network and j′i in the noncognate network. The fluxes forming
products are jpep = 1 and j′pep = η, where η is the final error rate. The cost is defined by

C =
j7 + j′7 − j−7 − j′−7

jpep + j′pep

=
j7 + j′7 − j−7 − j′−7

1 + η
. (S123)

Similar to the steps taken to derive the error-cost bound in previous sections of the SI, we establish the relation
between fluxes inductively. We define the intermediate error rates:

ηread =
j′read

jread
, η2 =

j′2
j2
, η3 =

j′3
j3
, ηGTP =

j′GTP

jGTP
, η4 =

j′4
j4
, η5 =

j′5
j5
. (S124)
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All the noncognate fluxes {j′} can now be expressed in terms of the cognate fluxes {j}, the discrimination factors
{f}, and the error rates {η}. The stationary conditions for states ER7 and EW7 read

j5 − j−5 = 1, j′5 − j′−5 = η, (S125)

where j′5 = η5j5 and j′−5 = η f−5

fpep
j−5. These equations lead to(

η − η5
fpep

f−5

)
j5 =

(
1− fpep

f−5

)
η. (S126)

Since j5 = 1 + j−5 > 1, the intermediate error rate η5 satisfies:

η5 < η5,max = η ·max

(
1,
f−5

fpep

)
. (S127)

The stationary conditions for states ER6 and EW6 read

j4 − j−4 = j7 − j−7 + j5 − j−5, (S128)

j′4 − j′−4 = j′7 − j′−7 + j′5 − j′−5, (S129)

where j′4 = η4j4, j′−4 = η5f−4f
−1
5 j−4, j′7 = η5f

−1
5 f7j7, j′−7 = f−7j−7. Elimination of the forward proofreading flux j7

yields (
η5
f7

f5
− η4

)
j4 = η5

f7 − f−4

f5
j−4 +

(
f−7 − η5

f7

f5

)
j−7 +

(
f7

f5
η5 − η

)
. (S130)

Based on analysis employed in previous models, error rates η5 > f5
f−7

f7
could be achieved without any proofreading (by

making the k5 step rate-limiting). Hence, we study the cost for error rates η5 < f5
f−7

f7
. The coefficient

(
f−7 − η5

f7
f5

)
is positive. Proofreading preferentially dissociates noncognate complexes, indicating f7 > f−4 and f7 > f5 (which is
the case for experimental data). Thus, LHS must also be positive, leading to

η5 > η4
f5

f7
. (S131)

The minimum j4 is

j4 ≥

(
f7
f5
η5 − η

)
+ η5

f7−f−4

f5
j−4

η5
f7
f5
− η4

, (S132)

with equality condition j−7 → 0. The cost is

C =
j7 + j′7 − j−7 − j′−7

1 + η
=
j4 + j′4 − j−4 − j′−4

1 + η
− 1 (S133)

=
(1 + η4)j4 −

(
1 + η5f−4

f5

)
j−4

1 + η
− 1 (S134)

≥
(η4 − η)

(
1 + f7

f5
η5

)
(1 + η)

(
f7
f5
η5 − η4

) +

(
η4 − η5

f−4

f5

)(
1 + f7

f5
η5

)
(1 + η)

(
f7
f5
η5 − η4

) j−4 (S135)

For error rates satisfying η4 > η5f
−1
5 f−4, the proofreading pathway is unnecessary, and the minimum cost is zero.

For error rates satisfying η4 > η5f
−1
5 f−4, the cost is minimized in the limit j−4 → 0:

C ≥
(η4 − η)

(
1 + f7

f5
η5

)
(1 + η)

(
f7
f5
η5 − η4

) . (S136)
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The above minimum cost increases with η4 but decreases with η5. The maximum value of η5 is given by:

η5,max = η ·max

(
1,
f−5

fpep

)
. (S137)

The minimum value of η4 is determined by the maximal difference in the energy barriers along the chain of reversible
reactions from state E to state ER6/EW6:

η4 > η4,min = e−∆µmax (S138)

= min

(
f1,

f1fread

f−1
,
f1freadf2

f−1f−read
,
f1freadf2f3

f−1f−readf−2
,
f1freadf2f3fGTP

f−1f−readf−2f−3
,

f1freadf2f3fGTPf4

f−1f−readf−2f−3f−GTP

)
. (S139)

Therefore, we have derived the error-cost bound:

Cmin =
(η4,min − η)

(
1 + f7

f5
η5,max

)
(1 + η)

(
f7
f5
η5,max − η4,min

) , η ∈ (ηmin, ηeq), (S140)

where η4,min and η5,max are given by Eq. S139 and Eq. S137, respectively. The minimum error is

ηmin =
η4,min

f7
·min

(
1,
fpep

f−5

)
, (S141)

and the minimum error without proofreading is

ηeq = min

(
η4,min,

f1freadf2f3fGTPf4f5

f−1f−readf−2f−3f−GTPf−4
,
f1freadf2f3fGTPf4f5fpep

f−1f−readf−2f−3f−GTPf−4

)
. (S142)

Thus, the flux-based formalism could be used to fully determine the fundamental error-cost bound in this detailed
kinetic model of the ribosome. The methodology is completely same as that used in for the other models, and the
cost-error bound exhibits similar quantitative behavior. In fact, the mathematical form of this bound (Eq. S140) is
similar to that of the ribosome model studied in the main text (Eq. S101).
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