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Nonequilibrium reaction networks (NRNs) underlie most biological functions. Despite their diverse dynamic
properties, NRNs share the signature characteristics of persistent probability fluxes and continuous energy
dissipation even in the steady state. Dynamics of NRNs can be described at different coarse-grained levels.
Our previous work showed that the apparent energy dissipation rate at a coarse-grained level follows an inverse
power-law dependence on the scale of coarse-graining. The scaling exponent is determined by the network
structure and correlation of stationary probability fluxes. However, it remains unclear whether and how the
(renormalized) flux correlation varies with coarse-graining. Following Kadanoff’s real space renormalization
group (RG) approach for critical phenomena, we address this question by developing a state-space renormal-
ization group theory for NRNs, which leads to an iterative RG equation for the flux correlation function. In
square and hypercubic lattices, we solve the RG equation exactly and find two types of fixed point solutions.
There is a family of nontrivial fixed points where the correlation exhibits power-law decay, characterized by
a power exponent that can take any value within a continuous range. There is also a trivial fixed point where
the correlation vanishes beyond the nearest neighbors. The power-law fixed point is stable if and only if the
power exponent is less than the lattice dimension n. Consequently, the correlation function converges to the
power-law fixed point only when the correlation in the fine-grained network decays slower than r−n and to the
trivial fixed point otherwise. If the flux correlation in the fine-grained network contains multiple stable solutions
with different exponents, the RG iteration dynamics select the fixed point solution with the smallest exponent.
The analytical results are supported by numerical simulations. We also discuss a possible connection between
the RG flows of flux correlation with those of the Kosterlitz-Thouless transition.

DOI: 10.1103/PhysRevE.105.044140

I. INTRODUCTION

Nonequilibrium biochemical reaction networks are respon-
sible for many important biological functions, such as gene
regulation [1], ultrasensitivity [2], sensory adaptation [3], and
error correction [4,5]. Detailed balance is violated in these
nonequilibrium reaction networks and continuous free en-
ergy dissipation is needed to maintain their nonequilibrium
steady states (NESS) [6–8]. Indeed, free energy dissipation
rate (or entropy production rate) is a key characteristic of these
nonequilibrium systems. Quantifying the steady-state energy
dissipation rate and elucidating its relation with diverse bio-
physical functions have been an important topic in theoretical
biophysics and statistical mechanics.

The nonequilibrium reaction networks here refer to the
master equation description of systems far from equilib-
rium, which represents the dynamics with a discrete-state,
continuous-time Markov chain. The free-energy dissipation
rate can be determined by computing the entropy production
rate in the underlying stochastic reaction network given the
transition rates between all microscopic (fine-grained) states
of the system [7,8]. However, for complex systems with a
large number of microscopic states, the system may only
be measured at a coarse-grained level with coarse-grained

states and coarse-grained transition rates among them [9].
By following the same procedure for computing entropy pro-
duction rate, we can determine the energy dissipation rate at
any coarse-grained level. However, it is known that coarse-
graining reduces entropy production [10,11], which makes
it a challenging problem to determine the “true” dissipation
rate at the microscopic level, which is the free energy cost of
maintaining the NESS, from the apparent energy dissipation
rate determined at a coarse-grained level.

In our recent work [12], we connected dissipation at differ-
ent scales by developing a coarse-graining procedure inspired
by the real space renormalization group (RG) approach by
Kadanoff [13,14] and applying it to various reaction networks
in the general state space that can include both physical and
chemical state variables. We found that the energy dissipation
rate satisfies an inverse power law with the coarse-graining
scale. The scaling exponent was found to be the sum of
two contributions—a link exponent characterizing the reac-
tion network structure and a term that is determined by the
correlation of stationary probability fluxes (currents) in the
network. While the link exponent can be calculated directly
from the network structure and the coarse-graining process,
it proves more difficult to obtain the correlation between the
steady-state fluxes, which depends on all the rate constants in
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the entire network in a nonlinear fashion [15] and also evolves
under the coarse-graining process. In our previous work [12],
the flux correlation function was computed numerically.

In this work, we derive and solve the functional RG equa-
tion of the flux correlation function exactly for hypercubic
lattice networks in arbitrary dimensions. The hypercubic lat-
tice structure is not only theoretically more tractable, but
also represents the state-space structure of a large class of
reaction systems, such as chemcial reaction systems includ-
ing the Brusselator and active matter systems including the
MT-kinesin active flow system [12] and active disordered
media [16]. First, we derive the iterative RG equation of
the correlation function of steady-state fluxes by following
the state-space coarse-graining procedure. Then, we solve the
functional RG equation exactly and find a family of fixed
point solutions. Next, we determine the stability of these
solutions. Finally, we show how the initial condition in the
RG equation, i.e., the correlation function in the fine-grained
system, determines the fixed point to which the system con-
verges under the coarse-graining procedure, and thereby the
dissipation scaling exponent. We solve the problem in detail
in the square lattice network before extending the analysis and
solutions to 3D (cubic lattice) and higher dimensions. Possible
connections of our problem in particular the existence of a
family of fixed point solutions with different exponents to the
Kosterlitz-Thouless phase transition will also be discussed.

II. SQUARE LATTICE

We start by establishing the basic theoretical framework
of network coarse-graining and correlation renormalization.
Consider a general nonequilibrium system whose microscopic
configuration is represented by discrete states labeled with
i = 1, 2, · · · , n. The system evolves following continuous-
time Markovian dynamics. Let Pi(τ ) denote the probability
of finding the system in state i at time τ and ki, j the rate of
transition from state i to state j. The probability distribution
evolves following the master equation

dPi(τ )

dτ
=

∑
j

[k j,iPj (τ ) − ki, jPi(τ )], i = 1, 2, · · · , n. (1)

Here, we focus on the systems’ properties in the steady
state where dPi

dτ
= 0 for all the states. We define Ji, j = ki, jPi

as the steady-state probability flux (current) and Ai, j = Ji, j −
Jj,i as the net probability flux. For reaction networks out of
equilibrium, the breaking of detailed balance relation leads
to nonvanishing net probability fluxes (Ai, j �= 0) and constant
dissipation of free energy in the steady state. The steady-state
energy dissipation (entropy production) rate is given by [7,8]

Ẇ =
∑
i< j

(Ji, j − Jj,i ) ln
Ji, j

J j,i
. (2)

For extended nonequilibrium systems, the state space con-
tains a large number of discrete states. Solving for the entire
steady-state probability distribution requires knowledge of all
the microscopic rate constants, which may be implausible ex-
perimentally but also unnecessary for analyzing macroscopic
observables. Instead, we can characterize the steady-state
properties with a coarse-grained description of the reaction

network, where similar microscopic states are combined into
one coarse-grained state. As the network is coarse-grained,
various quantities, such as the steady-state probability distri-
bution of the coarsed-grained states and the effective transition
rate constants between these coarse-grained states, must be
renormalized accordingly. We refer to the theoretical frame-
work which relates the properties at different coarse-grained
scales as the state-space renormalization group (SSRG) in-
spired by the real space renormalization group approach
pioneered by Kadanoff to study critical phenomenon and
scaling behavior in the Ising model [13,14]. An important
and crucial distinction, however, is that the coarse-graining
takes place in the general state space, which could include
both chemical and physical state variables, rather than the real
space whose state variable is the physical location.

In our previous work [12], a coarse-graining procedure was
developed and used to analyze the energy dissipation rate for
different reaction networks. We showed that the dissipation
rates at different scales obey a scaling law Ẇb ∼ Ẇ0(nb/n0)−λ

where nb/n0 is the number of microstates in each coarse-
grained state, which characterizes the scale change. The
scaling exponent is given by λ = dL − logr (1 + C∗). Both
dL and r are associated with the number of links (reactions)
and vertices (states) to be combined during the coarse-
graining procedure. They depend on the network structure
and the coarse-graining procedure but not the rate constants.
In contrast, C∗ is the asymptotic nearest-neighbor correlation
between those steady-state fluxes that are combined during
coarse-graining (CG), which depends on the rate constants
in the network. In our previous work [12], we computed this
correlation at different scales numerically and found that it
converges to a fixed value C∗ asymptotically as CG progresses
to coarser and coarser scales. This observation and the result-
ing power-law scaling of the dissipation rate suggested the
existence of fixed point(s) in the SSRG dynamics.

In this paper, we develop the SSRG theory to connect
flux correlation functions at different scales. By investigating
the SSRG dynamic analytically, we aim to understand the
scaling behaviors of the correlation function and thereby the
energy dissipation rate. In this section, we first describe the
SSRG theory in square lattice, which will be generalized to
hypercubic cubic lattices in subsequent sections.

A. RG equation for flux correlation

The basic procedure of network coarse-graining of the
square lattice is illustrated in Fig. 1. In each iteration, four
neighboring states are grouped together to create a coarse-
grained state, whose probability is the sum of the probability
of all constituent states. The transition rates in the coarse-
grained network are also renormalized to preserve the total
(directional) probability flux. For a pair of states i and j, for
example, the renormalized probability and rate constants are

Pi =
4∑

α=1

Piα , ki, j = Ji, j

Pi
= ki2, j1 Pi2 + ki4, j3 Pi4

Pi
. (3)

Similar relations exist for other states and other reaction rates.
This process is analogous to the block-spin transformation
proposed by Kadanoff [13].
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FIG. 1. An illustration of the coarse-graining of the reaction net-
work and the definition of correlation functions. Starting with the
network on the left, all the states in the same shaded area are com-
bined together to form a coarse-grained state, which is indicated by
the same color on the right. The longitudinal (transversal) correlation
function is defined as the correlation between the net fluxes on the
red (blue) links, which are parallel (perpendicular) to the direction in
which their separation is reduced by half.

Next, we define Ct (x) as the correlation function between
the net fluxes separated by distance x at the coarse-grained
level t :

Ct (x) = 〈At (0)At (x)〉√〈At (0)At (0)〉〈At (x))At (x)〉 , (4)

where At (0) and At (x) are two fluxes separated by distance x at
coarse-grained level t . As shown in Fig. 1, the correlation can
be defined in both longitudinal and transversal directions. The
exponent for the energy dissipation scaling only depends on
the transversal correlation [12], which relates together fluxes
which are perpendicular to the spatial separation x (indicated
by the blue links in Fig. 1). The longitudinal correlation,
which concerns fluxes parallel to the separation x, renormal-
izes trivially and does not contribute to the scaling exponent.
Thus, the correlations we refer to are all transversal unless
specifically stated otherwise. Let A(0) and A(x) denote two
net fluxes separated by x in the transversal direction. The
coarse-grained net fluxes are

At+1(0) = At (0) + At (1), At+1(x) = At (2x) + At (2x + 1).
(5)

The renormalized (transversal) correlation is obtained by sub-
stituting the flux renormalization relations [Eq. (5)] into the
correlation function definition [Eq. (4)]:

Ct+1(x) = 〈At+1(0)At+1(x)〉√〈At+1(0)At+1(0)〉〈At+1(x))At+1(x)〉
= 2Ct (2x) + Ct (2x − 1) + Ct (2x + 1)

2[1 + Ct (1)]
. (6)

This is the iterative RG equation for the flux correlation func-
tion. Ct (x) obeys the normalization condition

∑+∞
x=−∞ Ct (x) =

0 due to the steady-state flux conservation condition. Given
that Ct (−x) = Ct (x) and Ct (0) = 1, the normalization condi-

tion can also be written as
+∞∑
x=1

Ct (x) = −1

2
, (7)

which is indeed preserved by the RG iteration equa-
tion [Eq. (6)]. The asymptotic value of the nearest-neighbor
flux correlation that determines the scaling exponent for the
energy dissipation rate is given by: C∗ = limt→+∞ Ct (1).

The functional RG equation [Eq. (6)] is the first key result
of this paper. It allows us to predict the flux correlation func-
tion at any given scale from the original correlation function
at the microscopic scale. Next, we solve Eq. (6) to obtain its
fixed point solution(s).

B. RG fixed points

Despite the general difficulty to identify the fixed points
of functional RG equations, which involve infinite degrees
of freedom, the fixed points of Eq. (6) can be determined
exactly. Recognizing that the right hand side is reminiscent of
the discrete Laplacian, we introduce two auxiliary functions
which are the discrete integral of the correlation function:

St (x) =
+∞∑
y=x

Ct (y), Tt (x) =
+∞∑

y=x+1

St (y). (8)

The normalization condition translates to St (1) = − 1
2 , which

is decoupled from other degrees of freedom, rendering St (2),
St (3), and so on independent variables. The RG equations for
S and T are

St+1(x) = St (2x − 1) + St (2x)

1 − 2St (2)
, Tt+1(x) = Tt (2x)

1 − 2St (2)
.

(9)

The T equation implies that at the fixed point (indicated by
a superscript �), the ratio T �(x)/T �(2x) is a constant inde-
pendent of x. Hence, the equation only admits a power-law
solution T �(x) = T �(1)x−c and a trivial solution T �(x) = 0,
which corresponds to two classes of fixed points. The trivial
solution corresponds to a single fixed point, which we label
with subscript 0:

C�
0 (x) =

{− 1
2 , x = 1,

0, x � 2.
(10)

At this fixed point, any long-range correlation is absent be-
yond the nearest neighbor.

The power-law solution T �(x) = T �(1)x−c corresponds to
a family of solutions with different exponents. At long dis-
tance (large x), T �(x) behaves asymptotically as x−c; hence
C�(x), which is the second-order finite difference of T �, de-
cays as x−c−2. We introduce a new exponent a = 2 + c to
better characterize the asymptotic behavior of the correlation
itself. T �(1) is obtained by examining the RG equation for
x = 1:

2a−2 = T �(1)

T �(2)
= 1

1 − 2S�(2)
= 1

1 − 2T �(1) + 2T �(2)

= 1

1 − 2T �(1)(1 − 2−a+2)
, (11)
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(a) (b)
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FIG. 2. Fixed points and linear stability analysis in the square lattice. (a, b) Profiles of the correlation C�
a (x) and its cumulative sum S�

a (x)
at the power-law fixed point for different exponents a. (c) The spectral radius of the Jacobian matrix truncated at dimensions (2m − 1) for
different a. The black dashed line indicates |λ|max = 1, which is the boundary separating stable and unstable fixed points. (d) The spectral
radius extrapolated to infinite m for different exponents a, compared with theory (black dashed line for a < 2 and red dashed line for a > 2).

which leads to T �(1) = 1
2 and therefore, T �

a (x) = 1
2 x2−a. Per-

forming finite difference once gives S�
a(x) = 1

2 [(x − 1)2−a −
x2−a]. Another finite difference gives the correlation function:

C�
a (x) =

{
21−a − 1, x = 1,
1
2 [(x − 1)2−a + (x + 1)2−a] − x2−a, x � 2,

(12)

where the subscript a labels the asymptotic decay rate for this
family of fixed points. For a � 1, C�

a is indeed a fixed point
mathematically, but it does not correspond to the correlation
function of any reaction network since the summation of
all correlation is divergent, in violation of the normalization
condition Eq. (7). This class of solutions is irrelevant for flux
correlation. The a = 2 solution is also irrelevant since the
asymptotic power-law decay breaks down as c = a − 2 = 0,
resulting in a singular behavior. Thus, only exponents a ∈
(1, 2) ∪ (2,+∞) correspond to meaningful fixed points of the
flux correlation, which can be directly verified by inserting
these solutions to the RG equation [Eq. (6)]. The profiles of
these fixed point solutions are shown in Figs. 2(a) and 2(b).

In summary, the RG equation admits only two types of
fixed points: a trivial solution C�

0 with only nearest neigh-
bor correlation and a family power-law solutions C�

a [a ∈
(1, 2) ∪ (2,+∞)] with long-range correlation that decays
as x−a. These fixed point solutions are presented explic-
itly in Eqs. (10) and (12), which are the second key

result of this paper. Next, we study the stability and se-
lection of these fixed point solutions by analyzing the RG
dynamics.

C. Stability of the fixed points

The stability of the fixed points of the correlation function
may be analyzed by linear stability analysis, which evaluates
the spectral radius of its Jacobian matrix at the fixed point.
However, this analysis can not be directly applied to the cor-
relation C(x) itself since they are not independent variables
due to the normalization constraint. Instead, we can study the
Jacobian of the cumulative sum S(x), which are independent
variables for x = 2, 3, . . . . The Jacobian of S is defined as
follows:

J = ∂St+1

∂St
= ∂[St+1(2), St+1(3), St+1(4), · · · ]

∂[St (2), St (3), St (4), · · · ]
. (13)

For the specific power-law fixed point with exponent a, the
matrix elements are

Ji, j = ∂St+1(i)

∂St ( j)

∣∣∣∣
S�

a

= δ2i−1, j + δ2i, j

1 − 2S�
a(2)

+ 2S�
a(i)

1 − 2S�
a(2)

δ j,2

= 2a−2[δ2i−1, j + δ2i, j + 2S�
a(i)δ j,2]. (14)
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To obtain the spectral radius of this infinite-dimensional ma-
trix, we calculate the eigenvalues with a finite-dimension
truncation before taking the dimension to infinity. Specifically,
truncation is made at dimensions (2m − 1), which enables the
standard Gaussian elimination method to reduce the matrix
(λIm − Jm) to a lower diagonal matrix, revealing the charac-
teristic polynomial:

pm(λ) = det (λIm − Jm)

= λ2m−(m+1)

[
λm − (ξ−1 − 1)

m−1∑
k=0

λm−1−k

]

= λ2m−(m+1)qm(λ), (15)

where ξ = 22−a, and I is an identity matrix. The nonzero
eigenvalues are simply roots of the polynomial qm(λ). We
ask whether qm(λ) has any roots outside the unit disk in the
limit of infinite m. It proves useful to introduce z = λ−1 and
simplify qm to

qm(z) = z−m

(
1 + (1 − ξ−1)

m∑
k=1

zk

)
= z−mψm(z). (16)

To identify all the unstable eigenvalues, we simply look for
zeros of ψm(z) inside the unit disk. In the infinite m limit, the
summation in ψm(z) is convergent inside the unit disk, leading
to

ψ (z) = lim
m→∞ ψm(z) = 1 − zξ−1

1 − z
,

|z| < 1. (17)

For a > 2 and ξ = 22−a < 1, ψ (z) has a single root z = ξ

which is inside the unit disk with all the other roots residing
outside the unit disk. In this case, the fixed point is unsta-
ble, and there is only one unstable direction with eigenvalue
λ = ξ−1 = 2a−2 > 1. For 1 < a < 2, ψ (z) has no zeros inside
the unit disk, and the fixed point is stable. Note that the above
analysis could not be directly used to find the eigenvalues
associated to the stable directions since the calculation is valid
only for |z| < 1 or equivalently |λ| > 1, but this analysis is
sufficient for determining whether the fixed point is stable.

The spectral radius of the Jacobian matrix is evaluated
numerically with different truncations [Fig. 2(c)]. It increases
monotonically with m but quickly saturates. The two curves
with exponents a > 2 goes above 1, clearly indicating that
these fixed points are unstable. To extend the results to the
infinite system, we extrapolate by fitting the spectral radius
|λ|max evaluated at m = 10, 11, 12 to a usual exponential de-
cay function λ(m) = λ∞ − ce−κm, where λ∞ is the spectral
radius of the infinite system. The result is shown in Fig. 2(d).
The spectral radius stays below 1 for a < 2 and reaches 22−a

for a > 2, in complete agreement with the theoretical result.
Note that for a < 2, λ(m) approaches 1 from below but always
stays below 1. Its apparent decrease as a approaches 2 is due to
slower convergence (small κ). These results both numerically
analytically support the conclusion that the power-law fixed
point is be stable for 1 < a < 2 and unstable for a > 2.

For the trivial fixed point S�(x) = − 1
2δx,1, the Jacobian

matrix is singular, with the characteristic polynomial given by

pm(λ) = λ2m−1. We will determine the relevance of this fixed
point by directly analyzing the RG flows.

D. Dynamics of the RG flow

We start by analyzing the asymptotic behavior of the
long-range correlation under coarse-graining. Suppose the
fine-grained correlation C0(x) decays asymptotically as x−a0

(a0 is infinity if the decay is faster than power law). The
exponent a0 can be obtained from T0(x):

a0 = 2 + lim
x→∞ log2

T0(x)

T0(2x)
. (18)

The same exponent can also be evaluated for the renormalized
correlation, which we call at . From the RG equation of T (x),
however, we find this exponent to be invariant under the RG
iteration:

at+1 = 2 + lim
x→∞ log2

Tt+1(x)

Tt+1(2x)

= 2 + lim
x→∞ log2

Tt (2x)

Tt (4x)
= at = a0. (19)

Therefore, the correlation function converges to either the
power-law fixed point with a = a0 or the trivial fixed point
(which has no long range correlation and could thus have
arbitrary at ). This observation greatly simplifies the prob-
lem as we are now only concerned with the RG flow in the
one-dimensional manifold connecting these two fixed points,
with all other power-law fixed points rendered irrelevant. The
stability analysis in the last section indicates that the RG flows
converge to the power-law fixed point when 1 < a < 2 and to
the trivial fixed point otherwise. To test this, we consider the
RG flow starting from points on the straight line connecting
these two points, namely,

St (x) = pt S
�
a(x) + (1 − pt )S

�
0(x)

= pt S
�
a(x) = pt

2
[(x − 1)2−a − x2−a], x � 2. (20)

Substituting this into the RG equation:

St+1(x) = St (2x − 1) + St (2x)

1 − 2St (2)

= pt+1S�
a(x) + (1 − pt+1)S�

0(x), (21)

which leads to the RG equation for pt :

pt+1 = 22−a pt

1 − (1 − 22−a)pt
⇒ p−1

t+1 − 1 = 2a−2
(
p−1

t − 1
)
.

(22)
This recursive relation suggests exponential convergence to
one of the fixed points. For a < 2, pt tends to 1, indicat-
ing convergence to the power-law fixed point. Conversely,
pt tends to 0 for a > 2 which represents convergence to the
trivial fixed point. For a = 2, the power-law fixed point does
not exist so the correlation always converges to the trivial solu-
tion. Thus, the long-time behavior of the correlation function
under RG is completely determined by the asymptotic decay
of the initial (fine-grained) correlation function.

To test these results further, we calculate the correla-
tion Ct (x) by numerically iterating the RG equation starting
from different initial conditions (initial correlation functions)
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(a)

(b)

FIG. 3. The evolution of nearest-neighbor correlation Ct (1) un-
der RG iterations, starting from power-law initialization (a) or
exponential initialization (b). The legends of solid lines specify ini-
tial conditions C0(x), and broken lines indicate the values at fixed
points. For power-law initialization (a), the exponents are a1 = 1.4,
a2 = 1.8, a3 = 2.2. The mixing ratio is b = 0.3. For exponential ini-
tialization (b), the decay rates are γ1 = 10−5, γ2 = 10−4, γ3 = 10−3.

(Fig. 3). If the initial condition consists of a single power-law
decay (C0(x) = − 1

2ζ (a) x
−a), Ct (1) converges to the power-law

fixed point for a < 2 [blue and orange lines in Fig. 3(a)] and to
the trivial fixed point for a � 2 [green line in Fig. 3(a)]. More-
over, the trivial fixed point is always reached if the correlation
decays faster than power law. As shown in Fig. 3(b), Ct (1)
always tends to − 1

2 if the initial correlation is exponential,
regardless of how slow the decay is. These numeric results
confirm that ac = 2 is the critical point for the stability of the
power-law fixed points.

E. Selection of fixed point solutions

So far, the stability of individual power-law fixed point
solutions have been shown with two independent approaches:
computing spectral radius of the Jacobian or analyzing the
RG flow between power-law and trivial fixed points. Due to
the existence of a family of power-law solutions, it is nat-
ural to draw connection with various pattern/front selection
problems [17–19] and ask what happens if we start with a
combination of multiple solutions. In this case, the correla-
tion is dominated by the largest exponent at short distance
and the smallest exponent at long distance. After RG, the
short-distance variations are washed out and the long-range
behavior, which only depends on the smallest exponent, re-
mains and dictates the final correlation profile. Any other
terms with faster asymptotic decay is irrelevant in the RG
sense.

To illustrate this point, we consider a simple case with a
combination of two nontrivial solutions: St (x) = pt S�

a(x) +

qt S�
b(x). The RG equations for pt and qt are

pt+1 = 22−a pt

1 − (1 − 22−a)pt − (1 − 22−b)qt
,

qt+1 = 22−bqt

1 − (1 − 22−a)pt − (1 − 22−b)qt
. (23)

Between the two solutions, the one with the smaller exponent
always prevails over the other one as the ratio of the two
coefficients evolves as qt

pt
= 2−(b−a)t q0

p0
. In fact, the relative

decay rate was already hinted in Eq. (22), where smaller a
leads to faster convergence. These recursive relations have
three fixed points: (p1, q1) = (0, 0), which is the trivial fixed
point; (p2, q2) = (1, 0) and (p3, q3) = (0, 1), which are the
power-law fixed points with exponents a and b, respectively.
The stable one among them is the trivial fixed point if both
exponents are greater than 2 or the power-law fixed point with
the smaller exponent if it is smaller than 2.

In Fig. 4(a), we show the RG flows in the (pt , qt ) plane for
a < b < 2. While (1,0) is stable and (0,0) is unstable in both
directions, (0,1) has both stable and unstable directions. This
indicates that the C�

b solution is stable by itself but unstable
in the presence of another solution with a smaller exponent a.
However, the stability changes with exponents. For a < 2 < b
[Fig. 4(b)], the C�

b solution becomes unstable in both direc-
tions (i.e., even in the absence of C�

a ). (0,1) is completely
stable, and (0,0) is stable in the qt direction but not in the
pt direction. For 2 < a < b, only the trivial fixed point (0,0)
is stable [Fig. 4(c)]. For the sake of clarity, trajectories with
pt + qt > 1 are not shown because they converges to (0,0)
after growing to a large value before changing sign [Fig. 4(c),
inset].

Besides direct iteration of Eq. (23), we also carry out
explicit simulations of the RG dynamics of the correlation
function, starting with a linear combination of power-law
functions [red, purple, and brown lines in Fig. 3(a)]. In all
the cases examined, the correlation converges to the power-
law fixed point corresponding to the smaller exponent, if that
exponent is smaller than ac = 2. Figure 4(d) examines the RG
flow, with the x axis quantifying the asymptotic decay with an
effective exponent:

aeff (t ) = log2
4Ct (L)

Ct (2L − 1) + 2Ct (L) + Ct (2L + 1)
. (24)

The rationale behind this definition is both to recover the log-
derivative aeff ∼ − d log |C|

d log x in the large L limit and to recover
the exact value of a in the large t but finite L limit. The y axis
is some measure of (1 − p−1

t ) which, as shown in Eq. (22),
vanishes for stable fixed points. The direction of RG flows
indicates that there is a family of fixed points along the x axis,
which are stable for a < ac = 2 and unstable otherwise, in full
agreement with theory. The stability and selection of the fixed
point solutions summarized as the RG flow diagrams shown
in Fig. 4 is the third key result of this paper.

F. Possible connection to Kosterlitz-Thouless transition

The existence of a continuous line of fixed points and
the corresponding RG flow structure in SSRG are reminis-
cent of the well-known Kosterlitz-Thouless (KT) transition of
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(a) (b)

(c) (d)

FIG. 4. RG flows for the square lattice model. (a–c) RG flows in the (pt , qt ) plane for systems with a combination of two nontrivial solutions
[Eq. (23)] with three different combinations of exponents: (a), a = 1.7, b = 1.8; (b), a = 1.7, b = 2.2; (c), a = 2.2, b = 2.3. Empty and filled
red circles represent unstable and stable fixed points, respectively. Inset of C shows the trajectories starting with pt + qt > 1, which diverge to
a large number before converging back to the origin which is the only stable fixed point. (d) RG flows starting with a linear combination of
power-law functions. The initial conditions are linear combination of power laws (i.e., C0(x) = b1x−a + b2x−(a+a)). a = 0.5. b1 and b2 are
chosen to visualize RG flows in a sufficiently large dynamic range. L = 3 is used to calculate aeff . Solid and broken red lines indicate families
of stable and unstable fixed points, and the transition point ac = 2.0 is marked with a cross. The solid blue lines show the RG flows from 22
direct RG iterations, and dashed blue lines are extrapolation using the last 6 iterations assuming exponential convergence to a fixed point.

the two-dimensional XY model [20–22]. More specifically,
analogies can be drawn from the exponent a and the amplitude
term (1 − p−1

t ) to the two key parameters characterizing KT
transition: the inverse interaction parameter K−1 and fugac-
ity y0 of topological defects. y0 captures the energy cost of
introducing new defects, and K−1 characterizes the attrac-
tion and repulsion between defects. The recursive relations
of (K−1, y0) admits a family of fixed points with y0 = 0 and
different K−1. However, only those fixed points below the crit-
ical temperature, namely K−1 < K−1

c , are stable. An analogy
begins to emerge in which the exponent a plays a similar role
as K−1 in characterizing a family of fixed points, and ac = 2
is the critical point that corresponds to K−1

c , which separates
stable fixed points from unstable ones. Moreover, the analogy
also extends to how K−1 and a both characterizes the expo-
nent of the correlation function in the low-temperature phase
(the correlation is given by 〈s0sr〉 ∝ r−K−1/(2π ) in the low-
temperature phase of the two-dimensional XY model, and
∝ r−a for the flux correlation). The amplitude term (1 − p−1

t )
plays a similar role as y0, which converges to zero in the low-
temperature phase a < ac and diverges to infinity otherwise.

The striking similarity between the RG flow structure of
the two problems suggests that the two systems may be related
in a more fundamental way. In the square lattice, the net prob-
ability flux is described by a divergence-free flow field, which

can be decomposed into cyclic fluxes in the smallest reaction
cycles (equivalent to the flow field vorticity in the continuum
description). These cyclic fluxes (vortices) are analogous to
the topological defects in the 2D XY model. However, it is
not straightforward to generalize this analogy to hypercubic
lattices, whose RG flows, as shown in the following sections,
also bear resemblance to the KT transition. It is also important
to note that the KT transition takes place in thermodynamic
equilibrium while the NESS studied here can be arbitrarily
far from equilibrium. Although it may be fruitful to explore
further connection between the two problems, we did not
manage to find an exact mapping and leave it to future work.

G. Application of the SSRG results

An important application of the SSRG analysis and the
resulting fixed point correlation function is to determine the
value of the scaling exponent λ for the dissipation rate. For
a square lattice where the flux correlation decays as x−a, the
nearest neighbor correlation at the stable RG fixed point is
C∗ = 21−a − 1 for a < 2 and C∗ = − 1

2 otherwise. The dissi-
pation exponent is

λ2d = 1 − log4(1 + C∗) =
{ 1+a

2 , 1 < a < 2,

1.5, a � 2.
(25)
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In the random flux model where the reaction rates are inde-
pendent identical and identically distributed random variables
(i.i.d.), numeric calculation gives a = 2, C∗ = − 1

2 [12], lead-
ing to λ = 1.5 in the infinitely large system. While the
analysis here provides theoretical support for previous nu-
meric results in the random flux model [12], it could also
be applied to other reaction networks with different reaction
rates, which can lead to different exponents (a and λ).

III. CUBIC LATTICE

We now generalize our findings in square lattice to higher
dimensions, which constitutes the fourth (and the last) key
result of this paper. We start with the cubic lattice where
the transversal correlation is denoted by Ct (x, y) as there are
now two directions perpendicular to the flux. The correlation
is normalized by

∑
x,y C(x, y) = 0. The dissipation scaling

exponent is

λ3d = 1 − log8 (1 + C∗), (26)

where C∗ = limt→+∞ C∗
t = limt→+∞[Ct (0, 1)+ Ct (1, 0)+

Ct (1, 1)].

A. RG equation and fixed points

In cubic lattice, each coarse-graining step combines eight
adjacent states (vertices) together and merges four paral-
lel reactions (links) into one. The net fluxes are coarse-

grained by

At+1(x, y) = At (2x, 2y) + At (2x + 1, 2y) + At (2x, 2y + 1)

+ At (2x + 1, 2y + 1), (27)

where x, y denote the separation in the two transversal direc-
tions. The flux correlation Ct (x, y) is renormalized by

Ct+1(x, y)

= 1

4[1 + Ct (0, 1) + Ct (1, 0) + Ct (1, 1)]
[4Ct (2x, 2y)

+ 2Ct (2x − 1, 2y) + 2Ct (2x + 1, 2y) + 2Ct (2x, 2y − 1)

+ 2Ct (2x, 2y + 1) + Ct (2x − 1, 2y − 1)

+ Ct (2x − 1, 2y + 1)

+ Ct (2x + 1, 2y − 1) + Ct (2x + 1, 2y + 1)]. (28)

This is the iterative RG equation in the cubic lattice. Motivated
by results in the square lattice, we next look for fixed points
by calculating the discrete integrals:

St (x, y) =
+∞∑
u=x

+∞∑
v=y

Ct (u, v), Tt (x, y) =
+∞∑

u=x+1

+∞∑
v=y+1

St (u, v).

(29)
The recursive relation for S reads

St+1(x, y) = St (2x − 1, 2y − 1) + St (2x − 1, 2y) + St (2x, 2y − 1) + St (2x, 2y)

4[1 + Ct (0, 1) + Ct (1, 0) + Ct (1, 1)]
. (30)

Assuming axial reflection symmetry (relaxed below), normal-
ization reads St (0, 1) + St (1, 0) = − 1

2 . The recursive relation
for T becomes

Tt+1(x, y) = Tt (2x, 2y)

4[1 + Ct (0, 1) + Ct (1, 0) + Ct (1, 1)]
,

x2 + y2 > 0, (31)

which is greatly simplified compared to those for C and S.
At the fixed point, the ratio T �(x, y)/T �(2x, 2y) is a constant
independent of x and y. To see a direct analogy with the
square lattice case, we change into polar coordinates with
x = r cos θ and y = r sin θ . Here, the ratio T �(r, θ )/T �(2r, θ )
is independent of r. Therefore, the radial and angular direc-
tions are decoupled, and the radial equation is identical to the
x equation in the square lattice. T � has nontrivial power-law
solutions of the form

T �(r, θ ) = f (θ )r4−a, (32)

where the exponent is denoted as (4 − a) so that a directly
characterizes the asymptotic decay of C� itself. The angu-
lar distribution function f (θ ) is a continuous function that
captures any anisotropy of the flux correlation. The effect
of anisotropy will be discussed in detail later as it was not
previously studied in the square lattice which has only one
transversal direction. For now, it suffice to treat f (θ ) as some
arbitrary function with proper normalization. At the fixed

point, the denominator in Eq. (31) is given by

1 + C�(0, 1) + C�(1, 0) + C�(1, 1) = T �(2x, 2y)

4T �(x, y)
= 22−a.

(33)
The fixed points of S� and C� are obtained by performing finite
difference:

S�(x, y) = T �(x − 1, y − 1) + T �(x, y) − T �(x, y − 1)

− T �(x − 1, y), (34)

C�(x, y) = S�(x, y) + S�(x + 1, y + 1) − S�(x, y + 1)

− S�(x + 1, y). (35)

Although their analytic expressions are too complicated to
write explicitly (especially due to arbitrariness in the angular
distribution), it is clear that asymptotically S� decays as r2−a

and C� as r−a. The normalization condition for C requires a >

2. The above derivation does not cover the correlation near the
axes, namely S(x, 0), S(0, y), and S(1, 1), as T �(x − 1, y − 1)
is not defined at these points. These terms are obtained by
performing the same analysis separately along the two axes.
Along the y axis, for example, St (0, y) renormalizes as

St+1(0, y) = 2[St (0, 2y − 1) + St (0, 2y)]

4[1 + Ct (0, 1) + Ct (1, 0) + Ct (1, 1)]
, y � 1,

(36)
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which is different from the recursive relation off-axes
[Eq. (30)] but very similar to that in square lattice. The fixed
point solution to this equation is already known from the
analysis in 2D:

S�(0, y) =
{− f

(
π
2

)
, y = 1,

f
(

π
2

)
[(y − 1)3−a − y3−a], y � 2.

(37)

S� decays asymptotically as y2−a = r2−a along the y axis,
which is consistent with the r2−a decay found off-axes. Simi-
lar results exist along along the x axis:

S�(x, 0) =
{− f (0), x = 1,

f (0)[(x − 1)3−a − x3−a], x � 2.
(38)

The normalization condition St (0, 1) + St (1, 0) = − 1
2 turns

into a constraint on the angular distribution f (θ ):

f (0) + f
(π

2

)
= 1

2
. (39)

Finally, S�(1, 1) is determined by substituting C� with S� in
Eq. (33):

S�(1, 1) = 1
2 − 22−a + S�(2, 2) − S�(0, 2) − S�(2, 0), (40)

where S�(2, 2), S�(0, 2), S�(2, 0) are given by Eqs. (34), (37),
and (38), respectively. The set of equations presented here
gives the full solution to S� as function of a and f (θ ).
The flux correlation C� can be calculated by finite differ-
ence of S�, with the normalization condition already fulfilled
by f (θ ).

In addition to the power-law fixed points described above,
there is also a trivial fixed point where T � = 0 except
for nearest neighbors. The correlation vanishes except be-
tween nearest neighbors, namely C�(0, 1) and C�(1, 0).
They satisfy normalization condition C�(0, 1) + C�(1, 0) =
− 1

2 , but the correlation along the two axes need not be
equal.

Despite the large degrees of freedom generated by the
possibility of having angular anisotropy f (θ ), the dissipation
scaling exponent depends solely on the radial asymptotic
behavior. At the power-law fixed point, Eq. (33) leads to
C∗ = 22−a − 1 and λ3d, power−law = 1+a

3 . At the trivial fixed
point, the dissipation exponent is λ3d, trivial = 4

3 .
The above analysis indicates that there is a family of

power-law fixed points and also a family of trivial fixed points
for cubic lattice. This is completely analogous to the fixed
point structure for square lattice. The only difference is that
each power-law fixed point is now multiplexed by the possibil-
ity of having arbitrary angular distributions and that the trivial
fixed point is multiplexed by possible asymmetry between the
two axis. However, this angular distribution affects neither the

scaling exponent or the stability of fixed points, which we
show next.

B. Stability

In the square lattice case, stability of a given fixed point
correlation function was analyzed by calculating the spectral
radius of the Jacobian of S�. In fact, S� is the only possible
candidate for this analysis as C� is not an independent variable
due to the normalization constraint and T � has no closed-form
recursive relation. S�(x) decays as x1−a in 2D, and the stability
condition is a < 2, or equivalently that S�(x) decays slower
than x−1. In the cubic lattice, S�(r) decays as r2−a. As the
angular dependence is decoupled from the radial behavior,
the stability problem is effectively one-dimensional, so results
similar to those in 2D should be expected in 3D. By analogy,
it is reasonable to hypothesize that S�(r) is also stable only
when it decays slower than r−1, namely, 2 < a < 3 (the lower
bound is due to normalization). The hypothesis predicts the
critical value ac = 3. It is further supported by the contin-
uous transition of the scaling exponent at the critical point.
Below ac, the power-law fixed point is stable with exponent
λ3d, power−law = a+1

3 . As a approaches ac, the exponent tends
to 4

3 , which is exactly the exponent of the trivial fixed point
(λ3d, trivial = 4

3 ). In other words, there is no sudden jump in the
scaling exponent at the transition. Similar absence of discon-
tinuity in λ is also observed in 2D, where ac = 2 and λc = 3

2 .
These evidences suggest that the analogy between square and
cubic lattices should extend from the fixed point distributions
to their stability.

To make the above analogy more concrete, we study the
RG flows in 3D. The recursive relation Eq. (31) suggests
that the ratio Tt+1(r, θ )/Tt (2r, θ ) is independent of θ . Hence,
f (θ ) is invariant under RG transformations. Similar to the
calculation in square lattice, we could define a time-dependent
exponent at to characterize the asymptotic decay in the radial
direction:

at = 4 + lim
r→∞ log2

Tt (r, θ )

Tt (2r, θ )
. (41)

The exponent is also invariant under RG transformations.
Therefore, starting from the fine-grained correlation that de-
cays asymptotically as r−a, the system could only converges
to either the power-law fixed point with the same exponent
a or the trivial fixed point, with the angular distribution f (θ )
unchanged. This observation reduces the problem to a one-
dimensional manifold involving only two fixed points.

Following the procedure in 1D, we study the RG flow along
the straight line connecting the two fixed points, namely St =
pt S�

a + (1 − pt )S�
0. The recursive relation for S reads

St+1(x, y) = St (2x − 1, 2y − 1) + St (2x − 1, 2y) + St (2x, 2y − 1) + St (2x, 2y)

2 − 4[St (1, 1) + St (0, 2) + St (2, 0) − St (2, 2)]
. (42)

Plugging in the expression of S�
a yields

pt+1S�
a(x, y) = 24−a pt S�

a(x, y)

2 − 4pt
(

1
2 − 22−a

) . (43)
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(a)

(b)

FIG. 5. RG iterations in the cubic lattice network with isotropic
initialization. (a) Dynamics of C∗

t = Ct (0, 1) + Ct (1, 0) + Ct (1, 1),
which determines the dissipation scaling exponent λ3d . (b) Dynamics
of a nonneighboring correlation Ct (1, 2), which captures the behav-
ior of correlation at generic separations. The legends of solid lines
specify initial conditions with A1,2,3 being the proper normalization
constants. The dashed lines indicate values at the fixed point. The
exponents are a1 = 2.4, a2 = 2.7, a3 = 3.3. The mixing ratio is
b = 0.5. Note that the curves that come together in panel (a) also
converge in panel (b).

The RG equation for pt is

p−1
t+1 − 1 = 2a−3

(
p−1

t − 1
)
, (44)

which reveals the critical exponent ac = 3. For a < ac, pt

tends to 1 and the power-law fixed point is stable and se-
lected. For a > ac, pt vanishes, indicating that the power-law
fixed point is unstable, and the trivial fixed point is selected
instead. Notably, the RG equation for pt is identical to that
in 2D except for a different ac. The scaling exponent in
3D is

λ3d = 1 − log8(1 + C∗) =
{ 1+a

3 , 2 < a < 3,
4
3 , a � 3,

(45)

which depends only on a single parameter a that characterizes
the asymptotic behavior of the fine-grained correlation.

C. Numerical test with isotropic correlations

To test the analytic results, we numerically conduct the
RG iterations of the correlation with different initial condi-
tions (fine-grained correlations). We start with the isotropic
case where the correlation only depends on the separation
distance r. The simplest case is a single power law, namely,
C0(x, y) = −Aar−a where Aa ensures proper normalization.
Fig. 5(a) demonstrates that the C∗ (and therefore the dissi-
pation exponent) converges to the power-law fixed point for
a < 3 (blue and orange curves) and to the trivial fixed point
for a > 3 (green curve). We also examine initialization with

a linear combination of power laws. The same figure demon-
strates that the smaller exponent always dictates the long-time
behavior (red, purple, and brown curves), confirming the
physical picture that only the asymptotic behavior determines
the long-time behavior, which is unaffected by the addition of
any faster-decaying terms.

Notably, rather than being limited to C∗ only, the conver-
gence discussed here extends to the entire correlation function
C(x, y). For example, Fig. 5(b) plots a nonneighboring cor-
relation Ct (1, 2) for the cases studied in Fig. 5(a). The blue,
red, and purple curves, which share the same dominating
exponent a1, come together after very different trajectories.
The same behavior is observed for other exponents (e.g. see
orange and brown curves with the same exponent a2), and also
for correlation at generic separations. The parallel between C∗
convergence and Ct (x, y) convergence discussed here depend
on all the curves having the same f (θ ), which is not the case
in the anisotropic cases studied next.

D. The effect of anisotropy

A major difference between square and cubic lattices is
anisotropy f (θ ) which is only possible with multiple transver-
sal directions present. To probe its impact on the RG behavior,
we consider initialization with C0(r, θ ) = − f (θ )r−a, with an-
gular distribution f (θ ) = f0(1 + b|cos θ |c). f0 ensures proper
normalization, and b, c characterize anisotropy intensity. Fig-
ures 6(a) and 6(b) presents the numeric results for a = 2.5
and different choices of b and c. As shown by Fig. 6(a),
C∗

t converges to the same value (C∗
a = 22−a − 1, blue dashed

line), regardless of the different anisotropic terms in the initial
conditions. However, the entire correlation profile definitely
does not converge, as shown by different values of Ct (1, 2) in
Fig. 6(b). The lack of profile convergence captures the preser-
vation of f (θ ) during renormalization, but it is not relevant
to the calculation of the dissipation exponent λ. To deter-
mine λ, one simply finds the exponent a from the asymptotic
behavior and compare it with ac. These general conclusions
do not depend on parameter values or the functional form
of f (θ ).

E. Axial reflection symmetry

Having demonstrated the irrelevance of anisotropy in de-
termining the exponent λ, we now relax the condition of axial
reflection symmetry with respect to both axes, which was
assumed in the derivation. In the absence of this symmetry,
the recursive relation [Eq. (28)] must be modified by replacing
the denominator with

4(1 + C∗
t ) = 4 + 2Ct (1, 0) + 2Ct (−1, 0) + 2Ct (0, 1)

+ 2Ct (0,−1) + Ct (1, 1) + Ct (1,−1)

+ Ct (−1, 1) + Ct (−1,−1), (46)

which gives the generalized definition of C∗
t . The full cor-

relation could be decomposed into one symmetric and three
antisymmetric components:

Ct (x, y) = Cs
t (x, y) + Ca1

t (x, y) + Ca2
t (x, y) + Ca3

t (x, y),

(47)
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(a) (b)

(c) (d)

FIG. 6. RG iterations in the cubic lattice network with initial conditions that break different symmetries. (a–b) start with f (θ ) =
f0(1 + b|cos θ |c ), which breaks isotropy. (c–d) start with f (θ ) = f0[1 + b sin(2θ ) + c cos(2θ )], which breaks axial reflection symmetry. (a) the
dynamics of C∗

t = Ct (0, 1) + Ct (1, 0) + Ct (1, 1), which determines the dissipation scaling exponent λ3d . (b) the dynamics of a nonneighboring
correlation Ct (1, 2), which captures the behavior of correlation at generic separations. (c) Dynamics of the generalized C∗

t [defined in Eq. (46)].
(d) Dynamics of a nonneighboring correlation Ct (−1, 2). In all cases, the exponent is a = 2.5, and the values of b and c are given in the legends.
f0 ensures proper normalization. Panels (a) and (b) share the same legends, and so do panels (c) and (d). The dashed lines indicate values at
the fixed point. Note that the curves converge in panels (a) and (c) but not in panel (b) or panel (d).

where

Cs
t (x, y) = Cs

t (−x, y) = Cs
t (x,−y),

Ca1
t (x, y) = −Ca1

t (−x, y) = Ca1
t (x,−y),

Ca2
t (x, y) = Ca2

t (−x, y) = −Ca2
t (x,−y),

Ca3
t (x, y) = −Ca3

t (−x, y) = −Ca3
t (x,−y). (48)

The decomposition exists and is unique for any correlation
function Ct (x, y). In the recursive relation for C [Eq. (28)],
all the antisymmetric components cancel out in the denom-
inator [Eq. (33)], and the numerator is a linear combination
of both symmetric and antisymmetric components. The re-
cursive relations could be established for these components
separately by applying the same decomposition to t and t + 1.
The recursive relation of the antisymmetric components is
completely linear with a normalizing coefficient depending on
the symmetric components, while the symmetric components
renormalizes following exactly Eq. (28) which was studied in
previous sections.

The linearity of the antisymmetric RG equations ensures
that these components do not affect each other or influence the
symmetric component, but the symmetric component affects
the recursive relation of all components through the denom-
inator. In other words, the symmetric component affects the

renormalization of the antisymmetric components, but not the
other way around. Since C∗ and therefore λ only depend on
the symmetric components, we can simply ignore the anti-
symmetric components and symmetrize the correlation before
carrying out any RG analysis:

Cs
0 = 1

4 [C0(x, y) + C0(−x, y) + C0(x,−y) + C0(−x,−y)].

(49)

To test the above analysis, we carry out the RG iteration
numerically with the following angular distribution:

f (θ ) = f0[1 + b sin(2θ ) + c cos(2θ )], (50)

which no longer has reflection symmetries. In Figs. 6(c)
and 6(d), we show results with a = 2.5 and generic values of
b and c. The systems with different b and c have very different
correlation profiles, as exemplified by one of the elements
Ct (−1, 2) [Fig. 6(d)]. However, C∗

t converges to the same
fixed point value (22−a − 1) for these systems [Fig. 6(c)]. This
demonstrates that the antisymmetric components affect the
correlation profile but not the exponent λ.

IV. HYPERCUBIC LATTICES

We now generalize the results to hypercubic lattices of
arbitrary dimension n. In 3D, the correlation is first sym-
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metrized to eliminate all the antisymmetric components. The
recursive relation is then simplified by calculating discrete
integrals, which decouples radial and angular dependencies
to reveal the RG fixed points. Both symmetrization and dis-
crete integral could be generalized straightforwardly to higher
dimensions, which would reduce the n-dimensional problem
to a one-dimensional problem with the radial asymptotic be-
havior determining C∗ and λ. The radial equation admits
only power-law solutions C ∼ r−a, and the critical value of
the power exponent is exactly the dimension of the lattice,
namely, ac = n. The power-law fixed point is stable for a < ac

and unstable for a > ac. As a result, the scaling exponent is
given by λ = 1+min(a,n)

n .
Now we present the mathematical formalism to make

these arguments concrete. In n-dimensional hypercubic lat-
tice, there are (n − 1) transversal directions, so correlation
is denoted by Ct (r), where r = (r1, r2, . . . , rn−1). The sym-
metrization procedure is given by

Cs
0(r) = 1

2n−1

∑
s1,s2,...,sn−1=±1

C0(s1r1, s2r2, . . . , sn−1rn−1).

(51)

For the sake of simplicity, the superscript s is dropped, and
the correlations are symmetrized unless otherwise stated. The
recursive relation reads

Ct+1(r) = 1

2n−1(1 + C∗
t )

∑
r1,r2∈{0,1}n−1

Ct (2r + r1 − r2),

(52)
where

1 + C∗
t = 1

2n−1

∑
r1,r2∈{0,1}n−1

Ct (r1 − r2). (53)

To simplify the recursive relations, we introduce the discrete
integrals

St (r) =
+∞∑
r′

i=ri
1�i�n−1

Ct (r′), Tt (r) =
+∞∑

r′
i=ri+1

1�i�n−1

St (r′), (54)

whose recursive relations are

St+1(r) = 1

2n−1(1 + C∗
t )

∑
r2∈{0,1}n−1

St (2r − r2),

Tt+1(r) = Tt (2r)

2n−1(1 + C∗
t )

. (55)

The Tt (r) equation separates radial and angular dependencies
[there are now (n − 2) angular directions]. The equation has
both power-law and trivial fixed points. At the power-law
fixed point, the angular distribution is arbitrary, and the radial
equation has solutions of the form T �

a (r) ∝ r2(n−1)−a or equiv-
alently C�

a (r) ∝ r−a. The normalization condition requires
a > n − 1. At the trivial fixed point, the correlation is zero
except between nearest neighbors (|r| = 1). The dissipation

scaling exponent is

λnd = 1 − 1

n
log2(1 + C∗). (56)

At the power-law fixed point:

λnd, power−law = 1 − 1

n
log2

T �
a (2r)

2n−1T �
a (r)

= a + 1

n
. (57)

At the trivial fixed point:

λnd, trivial = 1 − 1

n
log2 (1 + C∗) = n + 1

n
. (58)

The two exponents meet at a = n, which is actually the critical
value separating stable and unstable power-law fixed points.
To demonstrate this, we carry out stability analysis following
methods used in 2D and 3D. Since the asymptotic behavior
of T (r) at large r is invariant under RG, a system whose
fine-grained correlation decays as C0(r) ∝ r−a could only
converge to a power-law fixed point with exponent a or a
trivial fixed point. We then study the RG flow direction at
an intermediate point St = pt S�

a + (1 − pt )S�
0, where S�

0 = 0
is the trivial solution and S�

a is the power-law solution. The
recursive relation for S reads

St+1(r) =
∑

r2∈{0,1}n−1 St (2r − r2)∑
r1,r2∈{0,1}n−1 Ct (r1 − r2)

=
∑

r2∈{0,1}n−1 St (2r − r2)

2n−2[1 − f (S)]
, (59)

where f (S) is some linear combination of finite terms of S(r)
whose values at the fixed points are f (S�

a ) = 1 − 2n−a and
f (S�

0 ) = 0. This leads to the recursive relation for pt :

pt+1 = 2n−a pt

1 − pt (1 − 2n−a)
, (60)

which could be simplified to

p−1
t+1 − 1 = 2a−n

(
p−1

t − 1
)
. (61)

Indeed, the critical exponent is ac = n. The power-law fixed
point is stable below ac and unstable above ac. The dissipation
scaling exponent is

λnd = 1

n
[1 + min(a, n)], (62)

where a characterizes the asymptotic decay of the fine-grained
correlation.

Interestingly, the maximum possible scaling exponent
max λnd = 1 + n−1 decreases monotonically with n. Its limit
value in the infinite dimension limit limn→∞ λnd = 1 is ex-
actly the exponent in the random hierarchical network (RHN),
which could be considered the mean-field model of regular
lattices [12]. This indicates the absence of any finite upper
critical dimension, i.e., nc = ∞. Therefore, the RHN model
(random wiring) could never exactly represent regular lattice
in finite dimensions.

V. DISCUSSION

In this work, we developed a theoretical framework of
state-space renormalization group (SSRG) to study evolution
of the correlation function between net probability fluxes in
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nonequilibrium reaction systems under coarse-graining of the
network. The fixed points of the functional RG equation for
the flux correlation function are solved exactly in hypercubic
lattices to obtain a family of solutions with different power-
law decay exponents. The stability and selection of these fixed
point solutions are determined by studying the dynamics of
the RG flow. These results can be directly used to explain the
inverse power-law dependence of energy dissipation rate on
coarse-graining scales [12] and to determine the the corre-
sponding dissipation scaling exponent λ.

The SSRG theory could be further developed to study
many physical and biological systems driven out of equi-
librium. A similar problem was recently studied with the
Martin-Siggia-Rose field theory approach [16], which is com-
plementary to the SSRG theory. However, the SSRG approach
is more amenable to generalization to other network struc-
tures, such as hexagonal lattices, scale free networks, or
random hierarchical networks, which also exhibit dissipation
scaling [12].

It would also be interesting to apply the SSRG theory to
real biochemical networks and explore the biophysical signif-
icance of the dissipation scaling exponent λ. More generally,
the steady-state fluxes play an important role in characterizing
various macroscopic physical observables of the NESS [23],
where the SSRG framework could prove useful.

The RG flow of the flux correlation function in 2D (or the
radial system in higher dimensions) bears interesting similar-
ity to the Kosterlitz-Thouless transition, where the exponent
a and the amplitude (1 − p−1

t ) play the roles of effective
temperature K−1 and fugacity y0, respectively. It might be
useful to explore an exact mapping between the two systems
to understand their similarity. Surprisingly, the scaling behav-
iors in our system suggest that there is no finite upper critical
dimension, which could be caused by the fact that there is no
direct averaging effect among different transversal directions
as suggested by the preservation of the angular distribution
f (θ ) under RG. Increasing the lattice dimension n allows for
more complicated angular dependence but does not change
the radial equation, which determines λ. Thus, it should not
bring any qualitative change of behavior with increasing n,
suggesting no finite upper critical dimension. It may be in-
teresting to explore its relation with other systems where the
upper critical dimension is suggested to be infinite, such as the
Kardar-Parisi-Zhang equation [24–26].
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