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We study the energy cost of flocking in the active Ising model (AIM) and show that, besides the energy
cost for self-propelled motion, an additional energy dissipation is required to power the alignment of spins.
We find that this additional alignment dissipation reaches its maximum at the flocking transition point in
the form of a cusp with a discontinuous first derivative with respect to the control parameter. To understand
this singular behavior, we analytically solve the two- and three-site AIM models and obtain the exact
dependence of the alignment dissipation on the flocking order parameter and control parameter, which
explains the cusped dissipation maximum at the flocking transition. Our results reveal a trade-off between
the energy cost of the system and its performance measured by the flocking speed and sensitivity to external
perturbations. This trade-off relationship provides a new perspective for understanding the dynamics of
natural flocks and designing optimal artificial flocking systems.
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Understanding how collective coherent motion (“flock-
ing”) emerges from a system of self-propelled, interacting
individuals has been a central question in nonequilibrium
statistical physics and biophysics [1–3]. Familiar examples
include birds, fish, bacteria [3,4], and synthetic systems
such as active colloids [5]. Theoretical studies have
involved models of self-propelled, aligning particles with
continuous [6–10] or discrete [11,12] symmetry. Despite
their diversity, these systems are all far from thermo-
dynamic equilibrium [13] and thus a continuous dissipation
of free energy is required to create and maintain the long-
range flocking order. Indeed, energy dissipation plays a
crucial role in driving living systems out of equilibrium to
achieve important biological functions, such as adaptation
[14], error correction [15–20], spatial patterns [21], and
temporal oscillation [22]. Here, we study nonequilibrium
thermodynamics of dry aligning active matter [23], aiming
to elucidate the relationship between the energetic cost of
flocking and its performance measured by the flocking
speed and sensitivity.
The dynamics and energy dissipation (entropy produc-

tion) of flocking can be studied at the microscopic level by
prescribing the single-particle dynamics [6] or at the
coarse-grained level with hydrodynamic field theories
[7,8]. In the latter case, the entropy production rate
(EPR) calculated from the standard procedure gives a
measure of irreversibility but usually has no thermody-
namic interpretation (unless under special conditions such
as linear irreversible thermodynamics [24]). Namely, it
does not give the (physical) heat dissipation rate, and an
alternative term “information EPR” has been proposed to
differentiate it from the microscopic EPR, which has

unambiguous thermodynamic interpretation [25–27]. The
reason behind this discrepancy is that coarse graining
drastically decreases the dissipation rate [28–30], which
means that macroscopic theories tend to dramatically
underestimate the energy dissipation. Therefore, it is
fundamentally important to elucidate the energy cost of
flocking using a microscopic model, which gives the “true”
heat dissipation, despite existing work using hydrodynamic
approaches [31,32].
Here, we investigate the energy dissipation of the active

Ising model (AIM) [11,12], which describes a lattice gas of
Ising spins with ferromagnetic alignment and biased
diffusion. Our main finding is a cusped energy dissipation
maximum at the flocking transition point, which is sup-
ported by numerical simulations and confirmed by the
analytical solution of reduced AIMs with two or three sites.
These findings uncover a new perspective on the energy-
speed-sensitivity trade-off in flocking.
Dissipation in the active Ising model.—The 2D AIM

describes N particles on an Lx × Ly lattice with periodic
boundary conditions. Each particle carries an Ising spin
s ¼ �1, and the number of � spins on site ði; jÞ is denoted
by n�i;j (no volume exclusion). The system follows
continuous-time Markovian dynamics including flipping
(local alignment) and hopping (self-propulsion). Each parti-
cle can flip its spin from s to (−s) at rate ωe−βE0smi;j=ρi;j ,
where mi;j ¼ nþi;j − n−i;j and ρi;j ¼ nþi;j þ n−i;j are the local
magnetization and density, respectively. ω−1 sets the
flipping timescale. E0 measures the strength of the spin-
spin alignment interaction, and β is the inverse temperature
which is set to 1. Each spin can also hop to one of the four
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neighboring sites, at rate Dð1þ sϵÞ to the right, Dð1 − sϵÞ
to the left, and D to up and down. The flipping dynamics
obeys detailed balance according to the Hamiltonian of a
fully connected (mean-field) Ising model, but the hopping
dynamics breaks detailed balance and drives the system out
of equilibrium. Flocking is defined as the emergence of
long-range order (LRO) among spins characterized by a
finite hsi with the mean flocking speed given by v ¼
2Dϵhsi in the x direction. Note that, in the special case of
unbiased diffusion ϵ ¼ 0, LRO can still emerge albeit with
zero flocking speed (see Fig. S3 in the Supplemental
Material for details [33]).
Two equivalent approaches are employed to calculate the

steady-state entropy production (energy dissipation) rate.
The first method calculates the average dissipation rate
from the ratio of forward and backward realizations of a
sufficiently long trajectory (assuming ergodicity) obtained
by simulating the AIM dynamics [34]. The second appro-
ach considers the different spin configurations (fn�i;jg) as
states of a reaction network with flipping and hopping as
the two types of transitions between different states. Once
the AIM reaction network reaches its nonequilibrium
steady state, the dissipation rate can be determined by
following the standard procedure for computing entropy
production rate of reaction networks [35,36]. These two
approaches are equivalent. The former is suited for the
numerical simulation of the full AIM, and the latter offers
analytical tractability in the two-site (and three-site) AIM.
A finite amount of energy dissipation is needed to drive

the system sufficiently away from equilibrium to generate
flocking behavior. As shown in Fig. 1(a), a nonzero
flocking speed v can be achieved by increasing ϵ at fixed
E0, which also increases the total dissipation rate _Wtot. The
flocking motion does not emerge until _Wtot is above a
certain (nonzero) threshold.
The total dissipation rate can be decomposed into

contributions from the two types of transitions:

_Wtot ¼ _Wm þ _Wa, where _Wm and _Wa correspond to the
dissipation rates due to motion (hopping) and alignment
(flipping) of the particles, respectively. Since each particle
moves at an average speed v0 ¼ 2Dϵ and each step along
the bias direction costs energy ln½ð1þ ϵÞ=ð1 − ϵÞ�, the
resulting dissipation rate for motion is simply _Wm ¼
Nv0 ln½ð1þ ϵÞ=ð1 − ϵÞ� (see Appendix A for details).
The alignment dissipation _Wa can be calculated by sum-
ming up the cost of all flipping events during a sufficiently
long time interval τ,

_Wa ¼ lim
τ→∞

1

τ

X
0<t<τ

2E0

1 −mi;js

ρi;j
: ð1Þ

Each event flips a spin s to (−s) on site ði; jÞ, which has
local magnetization mi;j and local density ρi;j (see
Appendix A). It will be convenient to henceforth refer to
the nondimensionalized alignment dissipation rate _wa ¼
_Wa=ð2ωE0Þ as the alignment dissipation.
The motion dissipation rate _Wm is responsible for driving

the self-propulsion of the particles, which is independent
of the alignment dynamics. As expected, _Wm increases
monotonically with ϵ, vanishing in the unbiased limit
(ϵ ¼ 0) and diverging in the irreversible limit (ϵ → 1).
The origin of the alignment dissipation _Wa is more subtle.
Although the local spin flipping dynamics obeys detailed
balance, the local spin system at a given site is driven out of
equilibrium by the continuous exchange of spins between
neighboring sites due to the transport process. A continu-
ous dissipation rate _Wa is needed to drive the spin align-
ment to maintain the flocking order. As a result, _Wa
depends on both the alignment strength (E0) and the
particle’s key transport properties, in particular, the motion
bias ϵ and the relative timescale D=ω. Next, we investi-
gate how the flocking behavior and dissipation rates
depend on these key control parameters of the system
ðE0; ϵ; D=ωÞ.
A cusped dissipation maximum at the flocking transi-

tion.—For a fixed bias ϵ, the system remains disordered
(v ¼ 0) until E0 is increased above a certain threshold Ec
[Fig. 1(b)]. The alignment dissipation _wa increases linearly
in the disordered phase and decreases monotonically in the
flocking phase (exponentially at large E0 as shown by
the inset). Remarkably, it reaches maximum exactly at the
transition point Ec in the form of a cusp. The value of _wa is
continuous across the transition, but its derivative
ðd _wa=dE0Þ changes abruptly from positive to negative
across Ec, forming a cusp at its maximum. Since _Wm stays
constant, the same cusped maximum behavior also exists
for _Wtot. Extensive numerical simulations find this behavior
to be general, regardless of the bias ϵ or the relative
timescale set by D=ω (see Appendix A). The critical Ec
decreases with ϵ and increases with ω, but it always
coincides with the maximum of _wa. The alignment

(a) (b)

FIG. 1. (a) The average flocking speed v versus the total
dissipation _Wtot for fixed values of E0 and increasing ϵ. (b) The
average flocking speed (blue) and alignment dissipation (black)
for ϵ ¼ 0.3. The red dashed line is the transition point Ec above
which v > 0. The inset shows the exponential decay of dissi-
pation at large E0. Lx ¼ 300, Ly ¼ 100, ρ̄ ¼ N=ðLxLyÞ ¼ 5,
D ¼ 1, and ω ¼ 1. See Sec. I A in the Supplemental Material for
details [33].
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dissipation can be decomposed into the product of the
frequency of flipping events _nf and the mean energy cost
per flip w̄f ¼ _wa= _nf. At the transition point, they both have
continuous values but discontinuous first derivatives,
which results in the cusp of _wa (see the Supplemental
Material [33]).
As discussed previously, the key to understanding the

alignment dissipation is how the transport of spins between
neighboring sites drives the local spin system out of
equilibrium. However, it is difficult to understand the full
AIM with a large system size due to the numerous degrees
of freedom. Next, we investigate the alignment dissipation
in a reduced AIM with the minimal number of sites that
allows transport of active spins.
The two-site (and three-site) AIM shows the cusped

maximum of flocking dissipation.—We consider a special
case of the AIM with only two sites (Lx ¼ 2 and Ly ¼ 1),
which is the minimum system size needed to drive the
AIM out of equilibrium to produce flocking behavior.
The flipping and hopping dynamics are the same as the
full AIM. Importantly, hopping left- and rightward are
considered to be two different processes, even though they
reach the same site due to the periodic boundary condition.
In the flocking phase, the left-right symmetry is sponta-
neously broken and hopping in one direction dominates.
Conceptually, the two-site AIM can be considered as a
coarse-grained version of the full AIM. It retains much of
the physics of the full AIM, including the flocking
transition and the associated dissipation maximum.
The model is fully characterized by the total number of

spins N and three state variables ða0; a1; b1Þ, where a0 is
the total number of þ spins; a1 and b1 correspond to the
number of þ and − spins on site 1, respectively. The
dynamics of the probability distribution Pða0; a1; b1Þ is
governed by the master equation,

dPða0; a1; b1Þ
dt

¼ LPða0; a1; b1Þ; ð2Þ

where L is a linear operator (matrix) capturing the
transitions. (The full equation and its solution are
covered in the Supplemental Material, Sec. II [33].) The
steady-state distribution Psða0; a1; b1Þ can be found by
solving LPsða0; a1; b1Þ ¼ 0 subject to normalizationP

a0;a1;b1 P
sða0; a1; b1Þ ¼ 1 and can be used to compute

all statistical properties of the system, e.g., the average total
magnetization hmi ¼ P

a0;a1;b1ð2a0 − NÞPsða0; a1; b1Þ.
At finite N, the phase transition point Ec can be

determined by computing the effective free energy land-
scape FðmÞ ¼ − lnPðmÞ, where PðmÞ ¼ P

a0;a1;b1 δð2a0 −
N −mÞPsða0; a1; b1Þ is the steady-state distribution of the
total magnetization m. As shown in Fig. 2(a), as E0

increases, the disordered state m ¼ 0 goes from stable
[F00ð0Þ > 0] to unstable [F00ð0Þ < 0], indicating the emer-
gence of flocking. The transition point Ec [determined by

F00ð0Þ ¼ 0] and the position of the alignment dissipation
maximum (Em ¼ argmaxE0

_wa) are extrapolated to con-
verge at infinite N (see the Supplemental Material, Fig. S3
[33]). Moreover, the curvature at the peak ∂

2
E0
_wajE0¼Em

increases with N [Fig. 2(b) inset] and it is projected to
diverge at infinite N. These results indicate a cusped
dissipation maximum at flocking transition of the two-site
AIM, consistent with observation in the full AIM.
In the infinite N limit, the steady-state probability Ps can

be obtained analytically by assuming D ≫ ω. However,
this assumption is not essential to the results. Perturbation
theory shows that higher-order corrections of the order
Oðω=DÞ do not affect the cusped maximum behavior in _wa
(see Appendix B). The effective free energy in the limit
ω=D → 0 is

FðmÞ
N

¼ z ln zþ ð1− zÞ lnð1− zÞ þ 2E0zð1− zÞ þOðN−1Þ;
ð3Þ

where z ¼ a0=N ¼ ðN þmÞ=ð2NÞ is the fraction of spin-
up. The flocking transition takes place at Ec ¼ 1, where the
most probable state (saddle point) goes from the disordered
state (z ¼ 1

2
) to the flocking state with z ¼ z⋆ð≠ 1

2
Þ, where

z⋆ is determined by

1

2ð1 − 2z⋆Þ ln
1 − z⋆
z⋆ ¼ E0; ðE0 > 1Þ; ð4Þ

which has two solutions z⋆ and ð1 − z⋆Þ corresponding to
flocking left- and rightward, respectively. Although the free
energy is equivalent to that of the mean-field Ising model,
the system continuously dissipates energy due to non-
vanishing state-space fluxes. The fluxes associated with
flipping give the alignment dissipation,

_wa ¼
1

2ωE0

X
flip

ðJþ − J−Þ ln
kþ
k−

¼
X

σ Ps ≡ hσi; ð5Þ

FIG. 2. (a) The effective free energy landscape demonstrates the
existence of a nonequilibrium phase transition in the two-site
AIM. N ¼ 50, D ¼ ω ¼ 1. (b) The alignment dissipation of the
two-site AIM with different finite N (solid lines) and infinite N
(red dashed line) and the full AIM (purple dots, normalized
according to the text). Inset: the curvature at the dissipation
maximum in the two-site AIM.
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where σ is the local alignment dissipation rate whose
average over Ps gives the steady-state alignment dissi-
pation _wa. The averaging is computed using the saddle
point method, which expands σ around the most pro-
bable state. Importantly, direct evaluation of σ at the

saddle point vanishes, and the leading-order contri-
bution comes from expansion to the second order in
ða1; b1Þ. This indicates that particle number fluctuations
are the essential source of alignment dissipation, which can
be expressed as

_wa ¼
1

2

�
∂
2σ

∂a21
hða1 − a⋆1Þ2i þ

∂
2σ

∂b21
hðb1 − b⋆1Þ2i

�
¼

(
E0 þOðωDÞ; 0 < E0 < Ecð¼ 1Þ
8E0½z⋆ð1 − z⋆Þ�3=2 þOðωDÞ; E0 ≥ Ec

; ð6Þ

where the derivatives are evaluated at the saddle point
ða⋆0 ; a⋆1 ; b⋆1Þ ¼ ðz⋆N; z⋆N=2; ð1 − z⋆ÞN=2Þ. The explicit
expressions for the Oðω=DÞ terms can be found in
Appendix B and the Supplemental Material [33].
It is clear from Eq. (6) that ∂E0

_wa is discontinuous at the
critical point (E0 ¼ Ec) because ∂E0

z⋆ is discontinuous
there. Quantitatively, we have ∂E0

_wajE0¼1− ¼ 1 and
∂E0

_wajE0¼1þ ¼ −3.5, which shows that _wa [red dashed line
in Fig. 2(b)] exhibits a cusped maximum exactly at Ec ¼ 1.
Equation (6) explicitly connects the dissipation _wa to
number fluctuations [hða1 − a⋆1Þ2i and hðb1 − b⋆1Þ2i].
To make a direct comparison between the two-site AIM

and the full AIM, we rescale E0 by Ec, normalize the
dissipation by its maximum, and plot them against each
other in Fig. 2(b). The two models agree exactly in the
disordered phase where dissipation grows linearly with E0,
as well as deep in the flocking phase where dissipation
decays exponentially to zero. The cusped maximum at
transition is also in good agreement, evident from the
discontinuity of the slope. There is a small quantitative
difference in dissipation at E0 slightly aboveEc because the
two-site model cannot capture the flocking band structure
in the mixed phase [37].
Although the two-site AIM captures the flocking tran-

sition and the cusped dissipation maximum of the full AIM,
_wa does not depend on the bias ϵ [Eq. (6)] since hopping to
the left and to the right end up at the same site. To make
sure this special property of the two-site model does not
affect the general results, we extend the analytical solution
to the three-site AIM. Aside from being more tedious, the
three-site AIM can be solved in a similar fashion as the two-
site AIM (see Appendix B and the Supplemental Material
for details [33]), which not only confirms the existence of
the cusped dissipation maximum at the flocking transition,
but also captures the dependence of _wa on ϵ explicitly.
The energy-speed-sensitivity trade-off.—The flocking of

interacting particles is conceptually analogous to the
synchronization of coupled oscillators [38,39], which
can be understood as flocking (collective dynamics) of
the phases of individual clocks. In both cases, an extra
energy dissipation is needed to maintain coherence among
individual subsystems (spins or oscillators) that are already
out of equilibrium. However, the dissipation of these two

systems exhibits different behaviors. For coupled oscilla-
tors, the dissipation increases with the order parameter,
meaning that it is very costly to maintain a system of highly
coupled (and therefore synchronized) oscillators [39]. In
the AIM, however, dissipation peaks exactly at the tran-
sition and decreases with interaction (E0) in the flocking
phase. At large E0, the highly ordered flock requires a
smaller energy to maintain. The difference between the two
behaviors stems from the alignment mechanisms. The
active spins align locally, which effectively synchronizes
their velocities. The coupled oscillators are synchronized
by exchanging phases, whose analogy in the AIM would be
simultaneous displacement of pairs of particles. This non-
local interaction couples the alignment cost to the cost of
motion (i.e., advancing the individual clocks), leading to a
higher dissipation in the ordered phase. These analyses
suggest that, compared to exchanging position, local align-
ment of velocity is an energetically more favorable way of
maintaining the order in a system of active particles.
Another key property of flocks is its sensitivity to

external perturbations, which we characterize by the
magnetic susceptibility χ of the AIM. In AIM, there are
many choices of parameters ðϵ; E0Þ to achieve any given
flocking speed v as shown in Fig. 3(a). For a given v, the
total dissipation achieves its minimum in the limit of E0 →
∞ and ϵ → v=ð2DÞ, which unfortunately leads to zero
sensitivity (χ ¼ 0). However, sensitivity can be increased
by decreasing E0, which requires increasing ϵ in order to

FIG. 3. The energy-speed-sensitivity trade-off in the two-site
AIM. (a) Contours for constant v in the ðϵ; E0Þ plane. (b) The
total dissipation and sensitivity along different v contours.
N ¼ 40, D ¼ ω ¼ 1.
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maintain a fixed v [Fig. 3(a)]. As a result, _Wm and thereby
the total dissipation increases. Figure 3(b) demonstrates
this trade-off whereby enhancing sensitivity at a constant
flocking speed necessarily increases dissipation. Similarly,
for a given sensitivity, increasing the flocking speed
also requires more dissipation; for a given dissipation,
increasing speed necessarily reduces sensitivity (see the
Supplemental Material, Sec. II [33] for analytical expres-
sions). These relations constitute an energy-speed-
sensitivity trade-off, which may affect the strategy for
flocks (natural or artificial) to optimize their performance
with limited resources.
Discussion and future directions.—A heuristic argument

for the long-range order in the hydrodynamics theory of
flocking (Toner-Tu equation) was the stabilizing effect of
the convective term, which enables particles to change their
neighborhoods of interaction [7]. Our study suggests that
such a stabilizing mechanism that combines motion and
alignment is intrinsically out of equilibrium and must be
sustained by continuous energy dissipation ( _wa).
Specifically, the motion leads to particle number fluctua-
tions which, as shown by Eq. (6), directly causes energy
dissipation. The fluctuation is maximal at the transition,
resulting in the dissipation maximum. Therefore, the
dissipation maximum reported here is deeply connected
to the underlying mechanism that leads to flocking tran-
sition. Given that the same mechanism underlies general
flocking models, it will be interesting to extend this study to
flocking theories with continuous symmetry and off-lattice
models [6–8]. In fact, a recent study on the Vicsek model
also finds dissipation maximum near flocking transition,
which suggests that the phenomenon observed in this study
may be general [40]. Another possible direction is to
compare the energy cost of flocking to other models of
nonequilibrium phase transitions, some of which also
demonstrate reduced energy dissipation in the ordered
phase [41].
The two-site (and three-site) AIM provides a useful

approach for understanding spatially extended nonequili-
brium systems without completely going to the mean-field
limit, which is an equilibrium limit unable to capture many
nonequilibrium properties such as energy dissipation and
the flocking transition. Given that the two-site AIM can be
considered as a coarse-grained version of the full AIM, it
will be interesting to investigate what is the appropriate
coarse-graining procedure that preserves the dissipation
characteristics, in particular, the cusped maximum be-
havior, and whether there is a scaling law for the dis-
sipation, as suggested by recent studies of general reaction
networks [28–30]. Finally, the energy-speed-sensitivity
trade-off uncovered here may provide a useful perspective
for understanding dynamics of natural flocks and designing
optimal control of artificial flocks.
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Appendix A: Energy dissipation in the 2D AIM.—The
dynamics of the 2D AIM is simulated using the random-
sequential-update algorithm outlined in the original model
[12]. The steady-state energy dissipation rate is obtained by
computing the average energy dissipation rate of a suffi-
ciently long trajectory [34],

_W ¼ lim
τ→þ∞

1

τ
ln

P
PR ¼ lim

τ→þ∞

1

τ

XM−1

i¼0

ln
k̃i
k̃Ri

; ðA1Þ

where P and PR are the probabilities of observing the
forward and backward trajectories [42]. The trajectory
contains M transitions (flipping or hopping), with k̃i and
k̃Ri being the forward and backward transition rates of the
ith transition (for a single spin). Thus, the rate ratios for
flipping and hopping reactions can be summed separately,
which leads to the partition between alignment and motion
dissipation. For hopping, the log rate ratio lnðk̃i=k̃Ri Þ is
simply sΔx ln½ð1þ ϵÞ=ð1 − ϵÞ�, where Δx ¼ �1 is the
displacement in the x direction. Hopping is along the bias
when s and Δx have the same sign, which leads to positive
dissipation. Conversely, hopping against the bias leads to
negative dissipation. Hopping in the y direction does not
contribute to dissipation since forward and backward rates
are equal. Therefore, the motion dissipation rate is

_Wm ¼ lim
τ→þ∞

1

τ

X
0<t<τ

Δxs ln
1þ ϵ

1 − ϵ
¼ Nv0 ln

1þ ϵ

1 − ϵ
; ðA2Þ

where v0 ¼ 2Dϵ is the average speed along the bias.
Similarly, the forward and backward flipping rates are

(a) (b)
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FIG. 4. Generality of the alignment dissipation maximum at
flocking transition. The heat maps show the alignment dis-
sipation density _wa=ðLxLyÞ for different combinations of
(a) ðE0; ϵÞ and (b) ðE0;ωÞ. The red lines indicate the flocking
transition as measured by the flocking velocity v. D ¼ 1,
Lx ¼ 300, Ly ¼ 100, ρ̄ ¼ N=ðLxLyÞ ¼ 5. ω ¼ 1 for (a); ϵ ¼
0.3 for (b). The black dashed line in (a) shows the parameter
values for Fig. 1(b).
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k̃i ¼ ωe−E0sm=ρ and k̃Ri ¼ ωeE0sðm−2sÞ=ρ. The alignment
dissipation is computed by summing the log ratios of
the rates [Eq. (1)]. A more detailed discussion can be found
in the Supplemental Material [33].
The generality of the alignment dissipation maximum at

flocking transition shown in Fig. 1(b) is confirmed by
simulation using different values of ϵ [Fig. 4(a)] and ω
[Fig. 4(b)]. The red lines indicate the flocking transition Ec
measured by the flocking velocity v, and the alignment
dissipation density _wa=ðLxLyÞ is quantified by the heat
maps. In all cases studied, the dissipation maximum
coincides with the flocking transition Ec, demonstrating
generality of the result.

Appendix B: Analytical results in the two- and three-site
AIM.—We start by computing _wa for the two-site AIM. To
obtain the steady-state distribution Ps, we decompose the
linear operator L into L ¼ DL1 þ ωL2, where L1 captures
hopping transitions and L2 captures flipping [33]. The
steady-state condition becomes ½L1 þ ðω=DÞL2�P ¼ 0,
where the second term is treated as a perturbation for
small ω=D. To the leading order in ω=D, P can be
written as

P ¼ Q0ða0Þ
�
p0 þ

ω

D
p1

�
þO

�
ω

D

�
2

; ðB1Þ

where p0 ¼ 2−Nða0a1Þð
N−a0
b1

Þ is the solution to the hopping
operator (i.e., L1p0 ¼ 0), and Q0ða0Þ captures the distri-
bution of the total magnetization due to flipping.Q0 and p1

are determined by expanding LP ¼ 0 to Oðω=DÞ,

L2ðQ0p0Þ þ L1ðQ0p1Þ ¼ 0: ðB2Þ

First, we eliminate L1 by summing over a1 and b1, which
leads to the steady-state condition for Q0,

X
a1;b1

L2ðp0Q0Þ ¼ 0; ∀ a0: ðB3Þ

In the infinite N limit, the solution is Q0ðzÞ ¼ e−F, where
z ¼ a0=N is the fraction of spin-up and F is the effective
free energy given by Eq. (3). p1 is determined by
substituting the Q0 solution into Eq. (B2),

p1 ¼ p0

E0

4
ψ1½zð1 − zÞNðx − yÞ2 − 1�; ðB4Þ

where x ¼ 2a1=a0 − 1 and y ¼ 2b1=ðN − a0Þ − 1, and

ψ1 ¼ zeE0ð1−2zÞ þ ð1 − zÞe−E0ð1−2zÞ: ðB5Þ

The total steady-state energy dissipation (entropy pro-
duction) rate is

_Wtot ¼
X
i<j

ðJi→j − Jj→iÞ ln
ki→j

kj→i
; ðB6Þ

where the summation goes over all pairs of transitions
ði; jÞ, which enables the decomposition into _Wm and _Wa by
summing flipping and hopping transitions separately. For
the motion dissipation, the calculation recovers Eq. (A2).
The alignment dissipation is given by the expectation value
of the dissipation rate density σ [defined in Eq. (5)],

σ ¼ 1

2ωE0

X
flip

ðJþ − J−Þ ln
kþ
k−

¼ 2E0zð1 − zÞ2eE0ð2z−1Þ
�
4zð1 − zÞ − ω

D
ψ1

2

�
Nðx − yÞ2 þOðx4; y4Þ; ðB7Þ

where the higher-order terms in x and y are omitted since
their expectation value vanishes in the infinite N limit.
Importantly, σ vanishes exactly at the saddle point
ðx; y; zÞ ¼ ð0; 0; z⋆Þ. Therefore, _wa comes from the sec-
ond-order term Nðx − yÞ2. This expansion directly relates
_wa to the particle number fluctuations since x and y are the
continuum versions of a1 and b1. The saddle point integral

in the ðx; yÞ directions is done by averaging Nðx − yÞ2 over
½p0 þ ðω=DÞp1�,

hNðx − yÞ2i ¼ 1

zð1 − zÞ
�
1þ ωE0

2D
ψ1

�
: ðB8Þ

The integral in the z direction is trivial since z can simply
take its saddle point value. The result is

_wa ¼

8>><
>>:

E0ð1þ ω
2D ðE0 − 1Þ þOðωDÞ2Þ; E0 < 1:

8E0ðz⋆Þ3=2ð1 − z⋆Þ3=2
�
1þ ω

2D

�
2E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z⋆ð1 − z⋆Þp

− 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z⋆ð1−z⋆Þ

p
�
þOðωDÞ2

�
; E0 > 1:

ðB9Þ
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These expressions explicitly demonstrate how the align-
ment dissipation depend on both E0 and the relative
timescale ω=D. They are in good agreement with results
obtained from the numerical solution of the master equation
(see Fig. S6 in the Supplemental Material [33]). _wa exhibits
a cusped maximum at Ec ¼ 1 regardless of ω=D because
both the leading-order term and the correction term have
discontinuous first derivatives there. The Oðω=DÞ term is
not included in the comparison with the 2DAIM [Fig. 2(b)]
since the time needed to diffuse through the whole system
is much longer than the timescale for flipping in the full
model.
The three-site AIM can be solved by using the

same method. The main difference is that the hopping

operator L1 explicitly depends on the bias ϵ, which enables
us to capture the ϵ dependence of _wa. Two new variables a2
and b2 are introduced for the number of þ and − spins
on site 2. To the first order in ω=D, the steady-state
distribution is Ps ¼ Q0ða0Þ½p0 þ ðω=DÞp1�, where p0 ¼
3−Nða0a1Þð

a0−a1
a2

Þðb0b1Þð
b0−b1
b2

Þ is the solution to the hopping

operator (i.e., L1p0 ¼ 0). Q0 ¼ e−F is the same as that
of the two-site model, and so is the saddle point z⋆. The
correction p1 depends on both E0 and ϵ, with its full
expression given in the Supplemental Material [33]. The
alignment dissipation is calculated using the saddle point
method, which involves expanding to the second order in
particle numbers. The result is

_wa ¼

8>><
>>:

2E0ð1þ ω
D

6þϵ2

3ð3þϵ2Þ ðE0 − 1Þ þOðωDÞ2Þ; E0 < 1;

16E0ðz⋆Þ3=2ð1 − z⋆Þ3=2
�
1þ ω

D
6þϵ2ð2−4z⋆ð1−z⋆ÞÞ

3ð3þϵ2Þ

�
2E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z⋆ð1 − z⋆Þp

− 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z⋆ð1−z⋆Þ

p
�
þOðωDÞ2

�
; E0 > 1:

ðB10Þ

In addition to capturing the cusped maximum at the
transition, the three-site result also reveals how _wa depends
on ϵ. It is in good agreement with numerical results
obtained using the Gillespie algorithm [43] (see Fig. S7
in the Supplemental Material [33]).
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